
Object-Oriented Analysis
and Design of Concurrent,

Real-Time Systems
KEVIN L. MILLS

INFT 860 SPRING 1993

DESIGN METHODS FOR
REAL-TIME SYSTEMS

GEORGE MASON UNIVERSITY

I. Introduction

As microprocessors fall in price and increase in performance, computing devices, and the
software that controls such devices, assume a larger role in society. For example, many gasoline
filling stations now offer computer-controlled pumps that allow a customer to specify his
preference for octane, to fill his tank, and to pay for his purchase by credit card, all without
human assistance. Automated teller machines (ATMs) abound in every shopping mall, grocery
store, and airport terminal; credit card-activated telephones appear where travelers congregate;
automobiles run more cleanly, efficiently, and safely with the aid of microprocessors; computer
bulletin-board systems allow subscribers to scan product offerings, to select purchases, and to
pay by credit card. All of these, increasingly common, computer applications exhibit some form
of real-time processing and concurrency. Many involve distributed processing, as well. As the
number and scope of these real-time, automated applications grow, our ability to analyze
requirements and to design solutions for concurrent, real-time systems must improve. (Readers
unfamiliar with the issues separating the design of concurrent, real-time systems from sequential
applications should consult an introductory exposition, such as that provided by Laplante1.)

Early attempts to analyze requirements for real-time systems focused on extensions to
structured analysis. The resulting technique, Real-Time Structured Analysis (RTSA)2, added
control transforms, control event flows, and state transition diagrams to structured analysis.
RTSA was first coupled with structured design to map real-time problems to sequential,
one-task, designs. Later Research showed how RTSA could be mapped to a concurrent tasking
design using Design Approach for Real-Time Systems (DARTS)3. For designing real-time
systems, DARTS provides a significant improvement over structured design.

Introduction of Ada† as a programming language and run-time system for embedded,
control software expanded the conceptual model through which most real-time, concurrent
systems could be approached4. Ada included a multitasking model, synchronization techniques,
and support for information hiding. These advances encouraged researchers to devise new
methods for analyzing and designing real-time systems. One such method, concurrent
object-based real-time analysis (COBRA)5, evolved from RTSA. While retaining the notation
from RTSA, COBRA adds: (1) guidelines for developing an environmental model,
(2) guidelines for decomposing a system into subsystems, (3) criteria for identifying objects and
functions, and (4) techniques for analyzing behavioral scenarios. COBRA also introduced the
notion of aggregate objects into the analysis. COBRA analyses can be mapped readily into
concurrent designs, and then into Ada implementations, using the Ada-based Design Approach
for Real-Time Systems (ADARTS)6.

Following the publication of Ada, an object-based programming language, further
developments led to the emergence of object-oriented languages, such as C++7 and Eiffel8.
Object-oriented languages include expanded features for software reuse (inheritance,
polymorphism, and object and method contracts)9. Object-oriented programming appears
attractive because the cost of software development might be reduced as the amount of software
reuse increases. As with Ada, object-oriented languages expanded the conceptual model
available to software designers. Recently, a number of methods have emerged for analyzing and

† Ada is a registered trademark of the U.S. Department of Defense

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 1

designing systems using object-oriented concepts10,11,12,13. One such method, the object modeling
technique (OMT)12, appears to build on the concepts used in RTSA and COBRA, and, thus,
might be applicable to concurrent, real-time systems.

This paper proposes that OMT provides a suitable analysis method for concurrent,
real-time systems. The argument is supported through application of OMT to an example
real-time application, an automated gas station management system (see Appendix A for the
requirements statement). Further, a mapping is proposed from an OMT analysis to a design,
based on an Object-Oriented Design Approach for Real-Time Systems (OODARTS), which
extends the object-based ADARTS method to encompass a full, object-oriented, design model.
To enable comparison between the RTSA, COBRA, and OMT methods, an analysis of the
automated gas station management problem is presented using each of the methods. The RTSA
specification is given in Appendix B, the COBRA specification in Appendix C, and the OMT
specification in Appendix D. To facilitate an evaluation of the OODARTS design method
against ADARTS, two designs for the gas station management system are shown. One design,
included as Appendix E, uses the ADARTS method to design a solution from the COBRA
analysis. The second design, included as Appendix F, uses the proposed OODARTS method to
design a solution from the OMT analysis.

Before discussing the various analyses and designs shown in the appendices, this paper,
in Section II, gives a brief description of the automated gas station problem. Section III
discusses the various problem analyses: first, the RTSA analysis, followed by the COBRA
specification and then the OMT model. Section IV presents the two design solutions: first, the
ADARTS design, developed from the COBRA analysis, and then the OODARTS solution,
developed from the OMT model. Section V provides a comparative evaluation of the strengths
and weaknesses of the various analysis and design approaches. Special consideration is given to
the applicability of OMT and OODARTS as analysis and design methods for concurrent,
real-time systems. The paper closes with some conclusions and a list of references.

II. A Real-Time Gas Station Control Problem

The real-time problem used as an example in this paper should be familiar to many.
Increasingly, gas stations are introducing automated pump processing to enable customers to
purchase gasoline by inserting a credit card or a cash card, by selecting a type of gasoline, and
then by pumping the gas for themselves. Of course, customers may still opt to pay in cash or by
credit card at a booth where a human attendant waits. The attendant can also observe the gas
station for safety hazards and emergencies, correcting hazards and reporting emergencies to the
police and fire departments, as appropriate.

 The gasoline station used as an example in this paper carries the familiar concept of an
automation-assisted gas station to a future time where gas stations might be completely
automated. Such stations would need automated gas station management (AGMS) software to
control their operations. The reader should imagine that the Pal Sal (Pump A Little, Save A Lot),
Inc. gas station chain is considering total automation of their gas stations. Further, image that
Pal Sal has assembled a requirements statement for automating their gas stations. The imagined

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 2

requirements statement is provided as Appendix A. To help to envision the problem, a
conceptual diagram of an automated Pal Sal station is shown as Figure 1.

GAS
STATION

SMOKE And HEAT
DETECTORS

PUMPS

COMMUNICATION
S LINK

REMOTE
CENTRAL
FACILITY

CASH CARD CREDIT CARD

Figure 1. An Automated Gas Station Concept

Each gas station comprises a number of pumps, initially eight, capable of accepting credit
or cash cards from customers, of dispensing gasoline, when authorized, of recording the
transaction, and of updating a customer’s cash card to deduct the amount of money used on gas.
If a cash card is inserted, the pump can validate the card by examining the cash value; any
customer can purchase gas with a cash card, up to the limit of cash on the card. If a credit card is
inserted, the pump must send an authorization request to a remote central facility, and must then
await a reply. If the card is validated, then gas can be dispensed until the customer turns off the
switch, or the switch is shut off automatically. After processing a credit transaction, the pump
sends the cost of the gas purchased, and the account number used to buy the gas, to the remote
central facility. In the example, each pump is capable of dispensing only a single type of
gasoline.

Each pump comprises a display to show the customer the amount and cost of the gas
purchased, a switch to activate the pump dispenser, and two LEDs to inform the customer when
their cash card is used or when their credit card is disapproved. Each pump operates
autonomously, but a gas station controller can request that individual pumps finish the current
transaction, if any, and then lock.

Each station includes a gas station controller that monitors safety and operating conditions
at the gas station. Connected to the gas station controller, a set of paired smoke and heat

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 3

detectors monitor the smoke particle concentration and temperature, respectively, at each pump.
These detectors are illustrated in Figure 1 as eight boxes, one mounted at each pump. Each box
contains a smoke and heat detector. Whenever a smoke particle concentration or temperature
threshold is exceeded at one of the detectors, an alert is raised at the gas station controller. The
gas station controller, upon receiving an alert, sounds an alarm at the station, sends an alarm
message to the remote central facility, and then requests that each pump close operations. The
gas station can also receive shutdown and restart requests from the remote central facility. Upon
receiving a shutdown request, the gas station asks that all pumps cease operations. Upon
receiving a restart request, the gas station asks that all pumps recommence operations.

A communications link, as shown in Figure 1, provides the path between the gas station
controller and the remote central facility, as well as a means for the pumps and remote central
facility to exchange information. The link can go up and down. When the link is down, the gas
station is required to shutdown. When the link returns to operation, the gas station should
automatically restart. When the link goes down, any transactions in progress are, of course,
terminated, but a record of any credit transactions must be saved, so that the cost of gas
purchased and the account number can be passed on to the remote central facility once the link
resumes operation.

The remote central facility maintains a staff of operators to monitor alarms at each gas
station and to maintain the central facility. The remote central facility also maintains a database
of corporate credit accounts.

The interested reader should take a few minutes to scan the five page problem statement
included as Appendix A. Those readers familiar with RTSA might also scan Appendix B to get
a more precise understanding of the automated gas station management system (AGMS)
requirements.

III. Problem Analyses and Specifications

At this stage in the paper, we switch writing styles to a more personal, first person plural.
We believe this switch in viewpoints helps to emphasize the nature of the design process. Since
the requirements have been stated, we begin to analyze those requirements, and to document our
understanding. To effectively communicate our thinking, we believe that the reader should know
that we exist, that we are thinking beings, and that we can make mistakes and reach assessments
and possess opinions with which the reader may not agree. Also, we think that the more active
writing style that flows naturally from a first person view will help us keep the reader’s attention.

In this, the third section of our paper, we present the analysis of the automated gas station
management system (AGMS). We performed the analysis using three different methods, and we
documented each of the analyses. For the first analysis we used Real-Time Structure Analysis
(RTSA), the simplest, oldest, and most widely applied of the analysis techniques we present in
this paper. Our main purpose in showing an RTSA specification is to present the AGMS in a
more precise manner than the requirements statement in Appendix A by using an analysis
method that many readers will be familiar with and that most readers, familiar or not, will be able
to easily comprehend. The RTSA specification provides a level base for understanding the
AGMS problem before we move on to consider progressively more complicated specifications

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 4

resulting from the Concurrent Object-Based Real-time Analysis (COBRA) method and the
Object Modeling Technique (OMT). So, we begin with RTSA.

A. RTSA -- A Great, Little Method for Real-Time Analysis

Real-Time Structured Analysis (RTSA) begins with the familiar concepts from structured
analysis: context diagrams, data flow diagrams, data dictionaries, and puesdo-code specifications
for leaf-level functions. To these concepts, the idea of control transforms, encompassing state
transition diagrams is added. The result: a problem analysis method for real-time systems that is
easy to use, easy to learn, and easy to understand. We have applied RTSA to our AGMS
problem, and have documented the resulting specification in Appendix B.

The data and control flow diagrams for the AGMS are given on pages B-1 through B-7.
The data dictionary comprises pages B-8 through B-11. The psuedo-code specifications, one for
each leaf node data transform, are recorded on pages B-12 through B-17. The state transition
diagrams, one for each control transform, are shown on pages B-18 through B-20.

The AGMS context diagram, B-2, delineates the boundary between the software and the
hardware components of the AGMS. As you can readily see, the AGMS software must interact
with a card reader, a communications link, some LEDs, some switches, an alarm, some gas
dispensers, and some detectors. On page B-3, the AGMS is decomposed into three functions: 1)
manage pump (one of which will exist for each pump in a gas station), 2) manage
communications link (one per gas station), and 3) manage gas station (one per gas station).

B-4 presents a further decomposition of the manage pump function. Here we see that
each pump monitors a pump on/off switch (1.2), and monitors a credit/cash card reader (1.3).
These devices can cause events to which the pump must respond. The Control Pump control
transform (1.1) accepts these events, as well as events arriving from the Manage Gas Station (3)
and Manage Communications Link (2) transforms, analyzes the events against the current state
of the pump, and then selects certain data transforms to activate. Data transforms controlled by
Control Pump (1.1) include: Authorize Transaction (1.4), Dispense Gas (1.5), Complete
Transaction (1.6), Reject Transaction (1.7), and Establish Transaction (1.8). All of the data
transforms shown on B-4 are leaf-level transforms, and therefore, each of them has a
corresponding mini-specification in psuedo-code. We encourage the reader to peruse these
mini-specifications to get a better understanding of the AGMS requirements. The Control Pump
control transform refers to a state transition diagram (on B-19) that defines the behavior of the
transform. We hope the reader will review the finite state machine on B-19 to understand how
Control Pump works. On the diagram, events are shown above lines, with corresponding actions
shown below the same line. Conditions that must be satisfied coincident with an event are shown
in [square brackets].

To run quickly through the Control Pump state diagram (see B-19), we see that the pump
begins operation in the open state. Once a cash or credit card is inserted, the pump moves to the
waiting authorization state, while invoking the Authorize Transaction function. If the transaction
is authorized, the pump moves into the authorized state, unless the customer turned on the switch
while authorization was pending, in which case the pump moves directly to the dispensing state
and enables the Dispense Gas function. If the customer’s cash card runs out, then the gas

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 5

dispenser stops, the Complete Transaction function is performed, and the pump returns to the
open state. If the switch is turned off while dispensing, the pump tells the gas dispenser to halt
and enters the waiting on done state. The left-hand side of the state diagram deals with requests
to close the pump while the pump is in various states. We think the reader can now easily follow
those events and actions. Once the pump enters the closed state, it remains there until an open
event arrives from the Manage Gas Station data transform.

The Manage Communications Link (2) transform is further decomposed into two levels:
B-5 shows the first level, and B-6 further decomposes the Send to Link (2.5) transform from B-5.
The inputs to the Manage Communications Link transform are all allocated on B-5. Incoming
messages from the communications link are handled by Add to Rcv List (2.1), which saves each
message into the RCV LIST data store and then calls Decode Message Header (2.2). Decode
Message Header removes a message from the RCV LIST data store, analyzes the message, and
generates any events stimulated be the message. Incoming Link State Interrupts are handled by
Analyze Link State (2.3). As appropriate, Analyze Link State will generate link events for
Manage Gas Station (3) and will pass on any new link status to Send to Link (2.5). Add to Tx
List handles messages flowing from Manage Gas Station (3) and from any of the Manage Pump
(1) transforms. Add to Tx List saves the incoming message into the TX LIST data store and then
sends a Wakeup to Send to Link (2.5). Send to Link is further decomposed on B-6.

Receiving a new link status or receiving a Wakeup causes Transmit Message (2.5.1) to
act. On a Wakeup, Transmit Message checks the TX LIST for messages to send and checks the
link status for an up link. If all conditions are ready, a message is removed from TX LIST and
sent as an Outgoing Message. If a new link status changes the link from up to down, then
Transmit Message (2.5.1) sends a Save to Save Credit Transactions (2.5.2) which then moves
any credit transactions from the TX LIST to the CREDIT TRANSACTION LIST while
discarding any other messages in TX LIST. If a new link status changes the link from down to
up, then Transmit Message (2.5.1) sends a Restore to Restore Credit Transactions (2.5.3) which
then moves the contents of CREDIT TRANSACTION LIST to the TX LIST.

The Manage Gas Station (3) transform is further decomposed on B-7. Here we see that
Manage Gas Station is controlled by a state transition diagram (shown on B-20) embodied in
Control Gas Station (3.1). The smoke and heat detectors in the gas station are monitored by
Monitor Detectors (3.2) which generates a Threshold Exceeded event when appropriate. Other
events arrive at Control Gas Station from Manage Communications Link (2). Control Gas
Station can trigger any of five functions: Sound Alarm (3.3), Reset Alarm (3.4), Send Alarm
Message (3.5), Send Opens (3.6), and Send Closes (3.7). The behavior of each of these functions
is described in a mini-specification. The conditions under which each of these transforms is
triggered are detailed in the Control Gas Station state transition diagram (B-20). We encourage
the reader to review the Control Gas Station state transition diagram, and the related
mini-specifications.

The data dictionary on B-9 through B-11 is self-explanatory. Each input and output data
item shown on the context diagram is described. Also the internal data stores are described.
From RTSA, we now take a step up in complexity to COBRA.

B. COBRA -- A Means To Analyze Larger Real-Time Systems

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 6

 The Concurrent Object-Based Real-time Analysis (COBRA) method starts with RTSA
as a base and adds several extensions intended to help analysts understand large, real-time
systems. COBRA divides the analysis of a system into two parts: 1) an environmental model
and 2) a behavioral model. The environmental model comprises a system context diagram, and
where appropriate, supporting subsystem context diagrams. COBRA includes a set of guidelines
for developing the environmental model. In fact, one of the extensions to RTSA provided by
COBRA is the concept of decomposing a large, real-time system into subsystems. Another
extension with COBRA permits representing subsystem components not only as functions, but
also as objects (thus, the object-based component of the name COBRA). COBRA includes
criteria for identifying functions and objects. Because COBRA permits representation of objects,
the level of information hiding supported exceeds that available within RTSA. A final extension
of note provided with the COBRA method is a technique for behavioral scenario analysis.
Scenario analysis yields a more rigorous development of the necessary state transition diagrams
than is possible using RTSA.

For the AGMS problem, our COBRA analysis is documented on pages C-1 through
C-54. The system context diagram (C-2) mirrors that given in the RTSA specification; however,
we immediately decompose the problem into three subsystems, each viewed as aggregate
objects, illustrated on C-3. One subsystem, for real-time control, is a pump object (one instance
of this object will exist for each pump in a given gas station), one is a communications (server)
object, and the other is a gas station (real-time coordination) object. Here, each of the external
data and control flows are allocated to one of the subsystems, and data and control flows between
the objects are identified. The subsystem context diagrams on C-4, C-5, and C-6 represent each
subsystem’s context, showing other subsystems, when inter-subsystem data and control flows
exist, as terminators. This completes our COBRA environmental model for the AGMS. Next,
we developed the behavioral model.

We developed one behavioral model for each of the three subsystems we identified in our
environmental model. A COBRA behavioral model consists of: 1) data/control flow diagrams,
2) a data dictionary, 3) psuedo-code for each leaf-level data transform, and 4) a state transition
diagram for each control transform. In addition, the scenario analysis supporting the
development of the state transition diagrams becomes part of the behavioral model. We included
the scenario analysis apart from a specific subsystem because we used the scenario analysis to
verify and correct our state transition diagrams. Thus, we viewed the scenario analysis as a
system-level specification, rather than a subsystem-level specification.

Our behavioral model for the pump subsystem can be viewed on pages C-8 through C-16.
C-9 provides the top-level view of the subsystem through a data/control flow diagram. Here, we
decompose the pump subsystem into five objects: a Pump Control object (1.1), a Switch (1.2), a
Card Reader (1.3), LEDs (1.4), and a Gas Dispenser (1.5). Each of these, except the Pump
Control object, are leaf objects, and, so, a psuedo-code specification for each is included with the
mini-specification section (pages C-13 through C-15). We further decompose the Pump Control
object on C-10 into a Control Pump control object (1.1.1) and four supporting functions:
Authorize Transaction (1.1.2), Establish Transaction (1.1.3), Complete Transaction (1.1.4), and
Reject Transaction (1.1.5). Each of these leaf-level data transforms is further specified with

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 7

puesdo-code. We further specify the control object with a state transition diagram show on C-16.
We document data items for the pump subsystem on pages C-11 and C-12.

Our behavioral model for the communications subsystem can be seen on pages C-20
through C-26. (Somehow, we managed to include two pages numbered C-26. Here, we refer to
the first of these.) C-21 provides the top-level view of the subsystem through a data flow
diagram. We included no control objects in the communications subsystem. We further
decompose the Send to Link function (2.5) on C-22. Thus, we decomposed the communications
subsystem into seven leaf-level data transforms, or functions: Add to Rcv List (2.1), Decode
Message Header (2.2), Analyze Link State (2.3), Add to Tx List (2.4), Transmit Message (2.5.1),
Save Credit Transactions (2.5.2), and Restore Credit Transactions (2.5.3). We provide
puesdo-code for each of these functions on pages C-23 and C-24. We give a data dictionary for
the communications subsystem on pages C-25 and C-26 (the first one).

Our behavioral model for the gas station subsystem is exhibited on pages C-26 (the
second of the C-26’s) through C-30. C-27 shows the entire subsystem on one data/control flow
diagram, including three objects and three functions. We specify the Control Gas Station control
object (3.1), and its three supporting functions (Send Alarm Message (3.4), Send Opens (3.5),
and Send Closes (3.6)), with a state transition diagram (C-30) and psuedo-code specifications
(C-29), respectively. Our subsystem design also includes two device objects: Detector Array
(3.2) and Alarm (3.3). We further specify these objects with psuedo-code on C-29. We include a
data dictionary for the gas station subsystem on C-28.

The final part of our COBRA analysis for the AGMS entails an analysis of various
behavioral scenarios, as documented on pages C-31 through C-52. We used these scenarios to
verify our two state transition diagrams, as shown on pages C-53 and C-54. We describe each
scenario that results from an external event (C-31-1 through C-31-4), we show how each scenario
flows through our AGMS (C-32 through C-52), and then we relate each scenario to our two state
transition diagrams (C-53 and C-54).

From our COBRA model, we now move on to examine a method that relies on objects
and object-oriented concepts as the basis for problem analysis. We continue to use the AGMS as
our problem statement.

C. OMT -- Objects Most Telling, Objects Most Timeless

The Object Modeling Technique (OMT) represents a problem from an object-oriented
point of view, but uses three sub-models to do so. The object model provides the fundamental
view of the problem. The object model describes the structure of objects within a problem, the
relationships between the objects, the attributes of each object, and ultimately, the functions, or
operations, of each object. The dynamic model yields a description of those aspects of a problem
that deal with issues of timing, sequencing, and control. The functional model represents those
aspects of a problem that require transformations of values, independent of when those
transformations occur. These three models, object, dynamic, and functional, are to be viewed as
related, with the object model being fundamental. The object model provides the main,
integrating view of a problem analysis. The operations in the object model correspond to events
in the dynamic model and functions in the functional model. The dynamic model describes

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 8

control regimes for objects that require such. The functional model contains functions that are
invoked through object operations or through actions in the dynamic model. Functions will
operate on attributes within the object model. The functional model might also describe
constraints on various object attributes.

The major motivation for OMT appears to be the philosophy that object modeling yields
a view that will be easiest to understand by the customer and the analyst, designer, and
programmer, and that object models provide a fundamental, problem-oriented, structure more
likely to endure the vicissitudes of changing requirements. For this reason, we have dubbed the
OMT acronym with two alternate specifications: Objects Most Telling (easier to understand)
and Objects Most Timeless (more likely to endure).

For the AGMS problem, our OMT specification comprises pages D-1 through D-54. Our
Object Model for the AGMS, pages D-1 through D-9a, includes: a basic object model (sans
operations) (D-2), an object dictionary (D-3 through D-9), and a complete object model
(including operations) (D-9a). We will present a description, in a little while, of how we
developed this object model. Suffice to say for now that our preliminary object model and a
draft of the object dictionary was developed first, and that a complete object model and final
object dictionary was produced only after the dynamic and functional modeling were completed.

Our dynamic model encompasses the five state charts shown on pages D-10 through
D-15. In due course, we will discuss how this model was developed.

Our functional modeling warrants some discussion. We originally attempted to develop a
functional model following the guidelines presented by Rumbaugh, et al.12 The results of our
efforts are documented on pages D-16 through D-34. These pages begin with a system context
diagram (D-17) and progress through several levels of data flow diagram decomposition (D-19
through D-26). We were most unhappy with the outcome of this exercise. Many of the data
transformations are stimulated by unseen control transforms (the functional model is restricted to
data transforms). Another source of concern is the intent of the functional model. The functional
model is to help us define operations on objects we defined in the preliminary object model, and
yet, not objects are included in the functional model. Despite our misgivings, we completed the
functional model with psuedo-code, function descriptions for leaf-level data transforms (D-27
through D-31) and with a data dictionary for the functional model (D-32 through D-34).

Because we found our functional model to be confusing and, potentially, of little use for
identifying operations in our object model, we developed an alternate functional model (pages
D-35 through D-54). We began our alternate model with the same context diagram (D-17,
repeated as D-36) with which we started our original functional model. From the context model,
we decomposed the AGMS into a set of objects (D-37) using our preliminary object model as a
guide. The initial decomposition, into an object communications diagram, includes two
aggregate objects (Pump and Gas Station) and one leaf-level object (Communications Link).
Here we allocated external data and control flows to the objects, and we identified, using mainly
the dynamic model, some event flows between object. In this model, event flows are viewed as
function flows where one object calls a function in another. For example, the AUTHORIZED
flow from the Communications Link object to the Pump object is viewed as if the
Communications Link is calling an AUTHORIZED function within the Pump.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 9

The Gas Station aggregate object is further decomposed, as shown in the object
communications diagram on D-38, into four leaf-level objects: Smoke Detector, Heat Detector,
Gas Station, and Alarm. Again, these objects come from the preliminary object model.

The Pump aggregate object is decomposed, as shown in the object communications
diagram on D-39, into nine leaf-level objects: Card Reader, Cash Card, Credit Card, Cash
Transaction, Credit Transaction, LED, Gas Dispenser, Switch, and Pump. These objects also
appear on the preliminary object model.

Once we defined the hierarchy of objects as a set of object communications diagrams
OCDs), we transferred events from the dynamic model to the OCDs. This helped us verify the
flow of events through the object model and forced us to specify the inter-object communications
requirements of the AGMS. From here, we used the attributes in the preliminary object model to
document which objects get and set the attributes. We placed these function flows on the OCDs.
Finally, we iterated over the OCDs, using the dynamic model and the preliminary object model
as our guide, to identify additional inter-object function flows that are needed. Then, we
transcribed those flows onto the OCDs.

After completing the analysis of our OCDs, we identified those objects that required a
more detailed functional model. For each such object, we created an object function diagram
(OFD). Our OFDs for the AGMS are shown on D-40 through D-46. Calls to the data transforms
on the OFDs can be traced from the OCDs (except where specific calls are made from within an
object), but the OFD approach truly allows the specification of an object’s functions independent
of the specific context in which the object will be deployed. This independence is a key
advantage of object-oriented modeling.

The OFD, our own invention, coupled with the OCD, enabled us to tie the functional
model to the object and dynamic models. The logical coherence we achieved enabled us to
produce a functional model consistent with the object view of OMT. Functional modeling as
defined by Rumbaugh, et al.12, we found to be divorced from the object model. This separation
leads easily to a logical incoherence between the object, dynamic, and functional views of an
OMT model. Such logical incoherence creates difficulties when allocating functions to the
object model. We found that our use of OCDs and OFDs made for an easy allocation of
functions to objects.

To complete our own functional model of the AGMS, we created object function
descriptions (D-47 through D-54) for each data transform identified on an OFD. Each function
description is shown using psuedo-code. We then updated our object dictionary to include a
specification of the calling sequence for each function from our function descriptions. Finally,
we updated our preliminary object model (D-2) to include the allocation of functions to object
operations, thus producing our complete object model for the AGMS (D-9a).

Now we propose to describe the process we used to create our OMT model of the AGMS.
The reader who is uninterested in this discussion can certainly move ahead to Section IV where
we describe two alternate designs for a solution to the AGMS problem. One design begins with
our COBRA specification and uses ADARTS to develop a solution. The other design begins
with our OMT specification and uses OODARTS to develop a solution. The interested reader
can press ahead to understand how we created our OMT model.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 10

Our first job was development of the preliminary object model from the problem
statement. We employed a set of steps provided by Rumbaugh, et al.12

1. Identify candidate objects.

2. Discard inappropriate objects.

3. Initiate a data dictionary. (We enlarged this to become an object dictionary.)

4. Identify candidate associations.

5. Discard inappropriate associations.

6. Identify candidate attributes.

7. Discard inappropriate attributes.

8. Refine inheritance.

9. Test access paths through the model.

10. Iterate on 1 through 9. (This iteration is continuous during dynamic and functional
modeling as well.)

The Rumbaugh book provides many suggestions for how to carry out each of these steps. We
found the suggestions given quite useful. We were able to develop a reasonable object model for
the AGMS after reading the Rumbaugh book, and without ever having developed previously an
object-oriented model. We had the greatest difficulty with the identification of relationships.
We kept trying to specify functional relationships, rather than structural relationships. Once we
overcame this impediment, our modeling proceeded smoothly. The results we obtained from
following these steps are shown below as Figure 2.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 11

Customer

Alarm

status

Heat
Detector

Smoke
Detector

LED Switch

status

Card Reader
amount
 dispensed
price per
 gallon

Gas
Dispenser

Remote
Central
Facility

S
t
a
I
D

Pump

status
ID

Station

2 Part of
Part of

P
a
r
t
o
f

8
+

 8+

AGSM OBJECT MODEL

Cash Card

cash value

Credit
Transaction

Cash
Transaction

H
a
s

Authorizes

Uses

Corporate
Credit Card

account
 number

Card

identification
number

8+

Gas Station

status
Station Id

P
I
D

Detector

threshold
status
processed
 sensor data

 Transaction

cost of gas
limit

Serves

Serves

R
equests

A
uthroizes

Communications
Link

status
RCV LIST
TX LIST
CREDIT

TRANSACTION
LIST

Uses

Figure 2. Preliminary AGMS Object Model

We next focused on creating the dynamic model. We began by following the procedure
recommended in the Rumbaugh book.

1. Prepare scenarios.

2. Simulate the user interface.

3. Identify events.

4. Build state charts.

5. Match events with objects.

We defined scenarios by identifying external events that arrived into the AGMS. We categorized
these events by source and destination. We envisioned a dynamic entity as the destination for
each event. This immediately led us to define state charts for the communications link, for the
gas station, and for the switch. Upon iteration, we identified dynamic objects that would create
internal events, and we discovered the destination of those events. This process led us to define a
state chart for the pump. We identified the need for a state chart in the detectors only after

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 12

considering the mechanism they would use to detect emergency conditions. Here we decided
that each detector should only send one internal event for each time the detector found that the
threshold had been crossed in an upward direction. This requirement could best be implemented
with a state chart.

Before going on, we would like to make some comments on state charts, since they
provide a more extensive set of semantics than the state transition diagrams used in RTSA and
COBRA. We will key our comments to the state chart for the pump as shown in Figure 3.

OpenedClosed

Waiting
Authorization

Authorized

Dispensing

OPEN from Gas Station

CLOSE from Gas Station

NOT AUTHORIZED/
reject transaction

CREDIT CARD INSERTED /
Create Credit Transaction

CASH CARD
 INSERTED /
Create Cash
Transaction

AUTHORIZED [Switch is not On]

AUTHORIZED [Switch is On]

do: Dispense Gas

ON from Switch

Stopped from Gas
Dispenser /

Light "Card Value Used" LED,
Complete Transaction

OFF from Switch
CLOSE from Gas Station

CLOSE from Gas Station /
Eject Card

CLOSE from
Gas Station /
Eject Card

Stopped from Gas Dispenser

Wait On Stopped

exit / complete
 transaction

 entry / Send Stop
Dispensing to
Gas Dispenser

Wait On Done

exit / complete
 transaction

 entry / Send Stop
Dispensing to
Gas Dispenser

Stopped from Gas
Dispenser

entry: authorize
transaction

Figure 3. Pump State Chart From OMT Dynamic Model Of AGMS

State chart notation represents states as rectangles with rounded corners. The state names
are written in bold in the upper left-hand corner of a state. This provides room to annotate the
state with three semantic devices: 1) a set of actions (following entry/) taken anytime a state is
entered, 2) a set of actions (following do:) performed continuously while in a state, and 3) a set
of actions (following exit/) taken upon leaving a state. The entry/ and exit/ notations enable the
analyst to avoid repeating identical actions on all transitions into and out of a state, and the do:
notation replaces the enable/disable operations on RTSA and COBRA state transition diagrams.
Of course, each transition into and out of a state can also be labeled with actions taken only
during that transition. The precedent rules are as expected: first, the actions on the specific
transition into a state (see the Waiting Authorization state in Figure 3) are executed, followed

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 13

by those associated with an entry/ (see, again, the Waiting Authorization state) notation in a
state. Then, while in the state, all do: actions (see the Dispensing state in Figure 3) are
continuously performed. Upon leaving a state, first the actions associated with the exit/ (see the
Wait On Stopped state in Figure 3) notation in the state are performed, followed by any actions
(see the STOPPED from Gas Dispenser transition from the Dispensing state in Figure 3) on the
specific transitions out of the state.

Each transition is activated by a specific named event with the NAME in caps (see, for
example, the CREDIT CARD INSERTED event on a transition leaving the Opened state in
Figure 3). Optionally, the name can be modified by a from object, (for example, as in the
CLOSE from Gas Station event on the transition leaving the Opened state in Figure 3) denoting
the name of the object that sent or caused the event. An additional modifier can constrain a
transition by placing a condition on the named event. Such conditions follow the event name,
and the optional from modifier, and are enclosed in [square brackets] (see, for example, either
AUTHORIZED event that causes a transition from the Waiting Authorization state in Figure
3). When actions occur during a transition, they are listed after a / that follows the event name
and modifiers (for example, see the CLOSE from Gas Station event that causes an Eject Card
action during the transition between the Waiting Authorization and Closed states in Figure 3).

These additional notational conveniences of state charts provide only superficial
enhancements to state transition diagrams; however, the more regular notation of state charts
probably improves the potential for automated tool support. An additional conceptual
improvement that state charts do provide, however, is the ability to hierarchically nest and to
sequentially decouple finite state machines. In the AGMS problem we did not use these features
of state charts. The interested reader is referred to the Rumbaugh book, and to references there to
work by Harel, for a fuller accounting of state chart notation.

Once the dynamic model was "completed" (please be aware that here, as with the object
model, significant and continuous iteration is required), we developed the functional model,
beginning with a system context diagram. We previously discussed the process we followed to
decompose the system into Object Communication Diagrams and then to Object Function
Diagrams and finally to Object Function Descriptions. Once the dynamic and functional models
were complete, we began to add operations to our preliminary object model.

The Rumbaugh book suggests several sources for identifying object operations. We
recount those sources here.

1. From the object model (i.e., gets and sets on attributes).

2. From events in the dynamic model.

3. From transition and state actions and activities (i.e., do: actions).

4. From functions within the functional model.

5. From shopping lists (i.e., a good object of this type should have these functions).

An initial decision we faced concerned events passed between the state charts. We could
represent each event arriving at an object as an operation of that object, or we could choose to
encapsulate the entire state chart within a single operation of the receiving object. We chose to

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 14

encapsulate the state chart in a single operation. Usually, we denoted this operation by the name
process_event. A second decision we faced concerning the state charts was whether to represent
the generation of events with specific send operations, or to hide event generation within the
process_event encapsulation operation. We chose to represent event generation explicitly.

After generating operations from the dynamic model, we turned our attention to the
functional model. Here, we created operations for each function identified in the functional
model for each object. This work was greatly simplified because our functional model was
created within the context of our preliminary object model. We then added any operations that
supported the internal operation of specific objects, but which seemed perhaps useful in some
contexts when accessed from outside the object. This was a limited application of the shopping
list suggested by Rumbaugh.

We had to step somewhat beyond the guidance provided in the Rumbaugh book if we
were to define operations to support modeling of polymorphism, coupled with inheritance.
Polymorphism appears in the Rumbaugh book on three pages. On page 2, Rumbaugh, et al.,
explain that polymorphism means that the same operation may behave differently in different
classes. They fail to inform the reader that polymorphism can be combined with inheritance to
produce some powerful results. On page 25, they explain that when classes share polymorphic
operations each definition of the operation must have the same number and type of input
parameters and the same return result, as well as a similar intent. Finally, on page 328, they
mention polymorphism in connection with a discussion of the CLOS language. The limited
discussion of polymorphism contained in the Rumbaugh book is simply one example of what
John Palmer terms gross concept neglect.14

John Palmer explains that almost nothing is discussed about the concept of polymorphism
in any of the most popular object-oriented analysis and design works, including Coad-Yourdon13,
Shlaer-Mellor11, and Rumbaugh12. Palmer goes on to explain why polymorphism is an important
object-oriented analysis and design concept. He gives four reasons.

1. Polymorphism can reduce the complexity of operation functional specifications.

2. Inclusion of polymorphism in object-oriented analysis can reduce the conceptual gap
between analysis and object-oriented design.

3. Polymorphism is consistent with the way in which traditional analysis methods have
evolved (i.e., precisely defined functions have been identified over time and have become
standards for analysis).

4. Polymorphism is a concept that parallels the way users typically think (i.e., people often
think of the same function carried out differently depending on the context).

Because we intended to take our OMT specification on to an object-oriented design, we decided
that polymorphism should be employed in the analysis. Fortunately, OMT provides for abstract
operations, and, indirectly, for redefining operations that have been given default behavior in a
superclass.

Recall from the preliminary object model (Figure 2 or page D-2) that we identified three
cases of inheritance: 1) Detector (inherited by Heat Detector and Smoke Detector), 2)
Transaction (inherited by Credit Transaction and Cash Transaction), and 3) Card (inherited by

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 15

Corporate Credit Card and Cash Card). In each of these cases we employed polymorphism. At
this stage we will introduce the complete object model, shown as Figure 4.

Customer

Heat
Detector

Smoke
Detector

LED Switch

status
Card Readeramount dispensed

price per gallon
limit

Gas
Dispenser

Remote
Central
Facility

S
t
a
I
D

Pump

status
ID

Station

2 Part of
Part of

P
a
r
t
o
f

8
+

D-9a AGSM COMPLETE OBJECT MODEL

Cash Card

cash value

Credit
Transaction

Cash
Transaction

H
a
s

Authorizes

Uses

Corporate Credit
Card

account number

Card
identification

number

8
+

Detector

threshold
status
processed
 sensor data

 Transaction

cost of gas
limit

Serves

Serves

R
equests

A
uthroizes

Communications
Link
status

RCV LIST
TX LIST

CREDIT TRANSACTION LIST

Uses

set id number
get id number
get account number
set account number
set cash value
get cash value

analyze link
add to rcv list
add to tx list
decode message header
transmit message
handle message send interrupt
handle message received interrupt
handle link state interrupt
save credit transactions
restore credit transactions

read {abstract}
monitor sensor
send threshold
 exceeded

Alarm

status

sound
reset

8+

Gas Station

status
Station Id

P
I
D

process event
open pumps
close pumps
send alarm messageread

read

start gas
stop gas
clear amount dispensed
update amount dispensed
update display
get amount dispensed
get price
?limit reached

light

handle switch interrupt
process event
send switch on
send switch off

process event

write
Eject
read

complete {abstract}
authorize {abstract}
reject {abstract}

complete
authorize
reject

complete
authorize
reject

get account number
set account number

set cash value
get cash value

get_limit
set_cost_of_gas

process change

Figure 4. Complete Object Model for the AGMS Problem

In the case of the Detector superclass, we defined an abstract operation, read. (An
abstract, or virtual, or deferred operation is one that defines what, but not how. No class
containing an abstract operation may ever be instantiated, but such a class can be inherited.) In
essence, the Detector class embodies all of the behavior of a detector except for the read
operation. A read operation must be defined by any class that inherits the Detector class. Thus,
in our specification of the AGMS problem, a Heat Detector and a Smoke Detector behave
identically, except for how they read the sensor data. We employed a similar approach when
defining the Transaction class.

The Transaction class contains three abstract operations: 1) complete, 2) authorize, and
3) reject. The behavior of each of these operations is defined differently for each of the
subclasses of Transaction (i.e., Credit Transaction and Cash Transaction). Now, whenever a
complete, authorize, or reject operation is invoked on a Transaction object, the correct behavior

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 16

will occur for the specific type of Transaction that is referenced. For the complete and authorize
operations, a Card class is used as an input parameter. This leads us to our final use of
polymorphism in the OMT analysis of the AGMS.

The Card class, although meant to be inherited, can be instantiated because we have
defined default behaviors for every operation of the class. The default behaviors give a logically
consistent, although not very useful, set of operations for the Card class. The Cash Card class
inherits Card, and redefines the set cash value and get cash value operations. In an
object-oriented design, the set account number and get account number operations might be
suppressed in the definition of a Cash Card, but in OMT no notation permits such suppression;
therefore, we chose to let the default operations obtain when no redefinition is given in a
subclass. Since the default operations were defined to work properly, no problem will occur.

The Corporate Credit Card class inherits Card, and redefines the set account number and
get account number operations. The default definitions for get cash value and set cash value
stand in this case.

After we identified all the operations needed for our AGMS object model, we
documented the operation behaviors, using psuedo-code, on pages D-47 through D-54. We then
updated the object dictionary (D-3 through D-9) to reflect the specification of the signature for
each operation, and, finally, we produced a complete object model (D-9a) by adding to the
preliminary object model the operations associated with each object class. This completes our
OMT specification for the AGMS problem.

IV. Concurrent Design Solutions

In this section of the paper, we present two design solutions for the AGMS problem. One
solution, included as Appendix E, begins with our COBRA specification and applies the
procedure and notation from the ADARTS method.6 The second solution, included as Appendix
F, begins with our OMT specification and applies an Object-Oriented Design Approach for
concurrent, Real-Time Systems (OODARTS). Rumbaugh, et al., provide very little guidance for
creating a concurrent, real-time design from an OMT specification. (The skeptical reader is
referred to Chapter 9 of the Rumbaugh book.12) ADARTS provides a good method and notation
for design of concurrent systems, but does not assume a strictly object-oriented environment.
OODARTS was devised by us to facilitate the generation of an object-oriented design from an
OMT specification. We derived OODARTS from the solid foundation laid by the ADARTS
method and notation. In most cases, we adopted ADARTS techniques with only slight
adaptations, as required for an object-oriented environment. We will explain our approach in due
course, but first we describe our ADARTS design.

A. ADARTS -- A Recipe for Solutions

ADARTS can be thought of as a recipe for concurrent, real-time solutions because, like a
recipe, ADARTS delineates steps for producing a dish (the design) from a set of ingredients (the
products of an analysis, such as RTSA or COBRA). Also like a recipe, the delectability of the
dish varies with the skill of the chef, yet even an inexperienced cook can produce an edible dish
simply by following the steps provided.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 17

ADARTS provides a three-phase approach to system design. In phase one, tasks are
identified, using a set of criteria for task structuring, and a task architecture is created. An
overview of our ADARTS task architecture for the AGMS is given on pages E-1 through E-5.
By applying the ADARTS task structuring criteria to the COBRA data/control flow diagrams in
Appendix C, we created the task architecture shown on E-3, and reproduced below as Figure 5.
The architecture is repeated on E-4, where the inter-task message flows are annotated with
numbers to facilitate a discussion of the message flows through the system of tasks.

For each task identified, ADARTS requires that a task behavior specification (TBS) be
produced. For our AGMS design, the task behavior specifications are given on pages E-6
through E-27. Each TBS: 1) names the task, 2) describes the input and outputs, categorized as
events, messages, and data, of the task, 3) identifies references to any information hiding
modules (IHMs, as discussed below), 4) specifies the ADARTS criteria used to identify the task
and provides references to the control and data transformations in the problem analysis that are
included within the task, 5) indicates the tasks timing characteristics and priority, 6) specifies the
thread of control for the task, and 7) documents any errors that the task detects or avoids.

The TBSs are produced initially from the problem analysis, and then, in the third phase of
the ADARTS method, are updated to include references to, and operations from, information
hiding module (IHM) specifications, the product of the second phase of the ADARTS method.
Our IHM specifications for the AGMS design are shown on pages E-28 through E-38. IHMs are
identified using a set of module structuring criteria included within the ADARTS method. For
each IHM in the design, ADARTS requires a specification that: 1) names the module, 2)
describes the information hidden within the module, 3) identifies the ADARTS structuring
criteria used to define the module, 4) documents any assumptions made about the module, 5)
anticipates any changes that will be made to the module, and 6) specifies each operation
included in the module.

Once the IHMs are specified, ADARTS requires that a system architecture be produced
by allocating modules to tasks. This system architecture design comprises the third phase of the
ADARTS method. Also, during this phase of the design, ADARTS requires that the TBSs be
updated to account for the IHMs. This amounts to including IHMs in the appropriate reference
section of each TBS and to adding IHM operation calls to the TBS thread of control section,
when appropriate. Our ADARTS system architecture for the AGMS problem is shown on pages
E-39 through E-41. We can now run quickly through the ADARTS design we produced from
the COBRA specification of the AGMS problem.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 18

DETECTOR
ARRAY

GAS
STATION
CONTROL

COMMUNICATIONS
LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Detector
Command

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

ALARM

CARD
READER

SWITCH

Card
Inserted
Interrupt

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Tasks
For Each
Pump

LED
Commands

Alarm
Command

Figure 5. ADARTS Task Architecture for the AGMS from a COBRA Specification

As shown in Figure 5, three tasks comprise the gas station (Detector Array, Alarm and
Gas Station Control), one task provides communications services, and a set of four tasks control
each pump within a gas station. The Card IHM is shared between the Card Reader and Pump
Control tasks, and the Transaction IHM is shared between the Pump Control and Gas Dispenser
tasks.

The reader can probably discern that ADARTS shows tasks as parallelograms and IHMs
as rectangles. Message flows, shown as arcs between tasks, can be loosely-coupled (flowing into
queues) or tightly-coupled, without reply (flowing through half rectangles) or with reply (flowing
through rectangles that have been flayed and twisted -- note that no icons for tightly-coupled
messages with reply are shown in Figure 5). External events are shown as jagged lines with
arrowheads attached. For a detailed accounting of the ADARTS notation, the reader is referred
to the creator of ADARTS.6

After we identified the IHMs in our design, we allocated those IHMs to the AGMS tasks
to create a system architecture diagram, as shown below in Figure 6. We will describe the
allocations we made.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 19

Timer
Event

Message
Received
Interrupt

Message
Sent
InterruptLink

State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Detector
Command

Transmit
Messages
Queue

Gas
Command

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

Card
Inserted
Interrupt

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Reader
Command

One Set Of
These Tasks
For Each
Pump

Card Reader

Switch

Pump Control

Gas Dispenser

Gas Station ControlDetectors Communications Link

Gas Station

Pump

LinkSmoke
Detector

Heat
Detector

Card
Reader

Gas
Dispenser

get_cash_value

get_limit

set_cost_of_gas

Card

Alarm

Alarm
Command

get_id_numberset_id_number

set_cash_value

is cash card

set account number get account number

is cash transaction

Transaction

set_limit

get_cost_of_gas

LED Commands

Figure 6. ADARTS System Architecture for AGMS from a COBRA Specification

Within the Detectors task, we included one IHM for each detector in the gas station.
Each specific IHM depends on the type of detector, smoke or heat. We placed the gas station
IHM, encapsulating the gas station control state transition diagram, inside the Gas Station
Control task. Inside the Communications Link task, we placed a Link IHM that provides all
operations needed to handle communications services. We placed the Pump IHM, encapsulating
the Control Pump state transition diagram, inside the Pump Control task. The Gas Dispenser
IHM, which hides the interface to the gas dispenser hardware, was placed into the Gas Dispenser
task. The Card Reader IHM, which hides the details of the card reader hardware, we allocated to
the Card Reader task. Since the Card and Transaction IHMs had already been placed between
tasks, we had merely to add the operations supported by the IHMs and then to show which
operations were invoked by which tasks.

The interested reader is advised to consult the TBS for each task and the specification for
each IHM to gain an understanding of the operation of the system. Enough detail is provided so
that a programmer can begin implementation of tasks and modules. For those readers who
simply desire a more comprehensive overview of our ADARTS design for the AGMS we

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 20

recommend the task and system architecture overviews beginning on pages E-2 and E-40,
respectively. Now, we move on to discuss our OODARTS design for the AGMS.

B. OODARTS -- Altering the Recipe

Although ADARTS makes a wonderful recipe for obtaining designs from analyses, the
method was developed absent additional ingredients that come with a full, object-oriented model.
The ingredients available from an object-oriented analysis technique, such as OMT, tend to be
fewer, but richer than those available from RTSA and COBRA. RTSA provides functions as
ingredients for the design. These functions can be viewed as individual herbs and spices.
COBRA adds objects in addition to functions. Such objects can be viewed as prepackaged
combinations of herbs, spices, and other seasonings. OMT ingredients for the design are all
prepackaged, i.e., OMT provides only objects. In addition, OMT ingredients can be altered
through special handling that takes advantage of the advanced properties of such ingredients.
OODARTS provides a recipe that employs some of the special handling available with OMT
ingredients. And OODARTS builds on the existing recipe given by ADARTS.

ADARTS can be used to create a decent design from an OMT specification, but a number
of concepts, such as inheritance and polymorphism, in the object-oriented paradigm cannot be
exploited. Also, a strict object-oriented model requires that all units in the design be represented
as objects, while ADARTS, relying on tasks and information hiding modules as its major
building blocks, does not recognize the concept of an object. On the other hand, ADARTS
provides the multiple threads of control needed in a concurrent design, while object-oriented
approaches hand-wave about each object potentially executing under its own thread of control.

ADARTS provides criteria for structuring tasks from objects and functions, for
structuring IHMs from objects and functions, and for allocating IHMs to tasks. When starting
from an OMT specification, all functions have already been allocated to objects, and so, there is
no need to allocate functions. And, since each object can potentially possess a thread of control,
the main goal of an object-oriented design method should be to determine which objects have an
independent thread of control (i.e., are active objects) and which do not (i.e., are passive objects).
Then, for each active object, a thread of control must be specified.

On the basis of these observations, we devised an Object-Oriented Design Approach for
concurrent Real-Time Systems (OODARTS), from the foundation established by ADARTS.
While a future refinement of OODARTS might show a greater divergence from ADARTS, our
initial development of OODARTS can be traced easily from ADARTS. We will explain our
approach before presenting our OODARTS design for the AGMS.

The first phase in OODARTS requires that an active object (AO) architecture be
developed. An AO possesses a independent thread of control; thus, an AO is analogous to an
ADARTS task, except that an AO is an object. We require that each AO have at least two
operations: 1) Create and 2) execute. The Create operation establishes the connections to other
AOs in the architecture, sets up initial attribute values, and encapsulates the creation of any
passive objects used by the AO. An AO can have any additional operations required. We can
envision an AO class that has default Create and execute operations, that is inherited by each AO

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 21

in the design, and that is refined to fit the behavior required for the type of object that is being
made active.

To facilitate communication among AOs, we define an number of other concepts. An
ACTIVE QUEUE provides a receptacle where loosely-coupled messages passed to an AO can be
placed until the AO requests them. This is analogous to an ADARTS message queue. We can
also envision an ACTIVE PRIORITY QUEUE, analogous to an ADARTS priority message
queue.

Messages can be sent by AOs. Messages sent to other AOs are analogous to ADARTS
tightly-coupled messages. Messages sent to ACTIVE QUEUES are analogous to ADARTS
loosely-couple messages. Messages sent to ACTIVE PRIORITY QUEUES are analogous to
ADARTS loosely-coupled messages sent with a specific priority. We define an operation send
MESSAGE to DESTINATION [with REPLY]. Here MESSAGE can be viewed as a system
object that can be inherited. The send operation causes different behavior depending on a
number of factors. If the DESTINATION specifies an ACTIVE QUEUE, then the MESSAGE is
placed at the end of the identified queue and the sender can continue operation. If the
DESTINATION specifies an ACTIVE PRIORITY QUEUE, then the MESSAGE is placed at the
end of the indicated priority slot for the identified queue and the sender can continue. Invalid or
omitted priority designations result in the MESSAGE being placed in the lowest priority slot. If
the DESTINATION specifies an ACTIVE OBJECT, then the MESSAGE is placed on a queue
for that object and the sender is suspended until the DESTINATION accepts the MESSAGE. If
the DESTINATION specifies an ACTIVE OBJECT and also includes an optional with REPLY,
then, after placing the MESSAGE on a queue for the DESTINATION, the sender is suspended
until a REPLY arrives from the DESTINATION.

An AO receiving messages has a number of mechanisms to use. The Wait for
MESSAGE from SOURCE primitive causes the receiving AO to suspend until a message arrives
from the specified source AO. The Await primitive causes an AO to suspend until any message
arrives for the AO. The Wait for MESSAGE in ACTIVE QUEUE primitive causes an AO to
suspend until a message arrives in the named queue. External events are handled by having an
AO create appropriate interrupt vectors, and then by assigning interrupt handlers to those vectors.
These mechanisms model the semantics available with ADARTS, but the semantics are
presented in an object-oriented fashion.

In addition to defining an AO architecture, OODARTS requires a behavior specification,
analogous to the task behavior specifications in ADARTS, for each AO. These AO behavior
specifications: 1) name the AO, 2) specify the inputs and outputs of the AO in terms of events,
messages, and data, 3) identify any passive object classes referenced by the AO, 4) indicate the
criteria used for determining that the object requires an independent thread of control and
identify any passive object classes included within the AO, 5) describe how the AO is activated
and with what priority it executes, 6) detail the Create and execute operations, as well as any
other necessary operations, for the AO, and 7) define any errors that the AO detects or avoids.

Beyond the AO architecture and behavior specifications, OODARTS requires class
specifications for each passive object class in the design. Such object class specifications replace
the IHM specifications in the ADARTS method. An OODARTS object class specification: 1)
names the object class, 2) explains what is encapsulated by the object class, 3) classifies the

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 22

object class using criteria from ADARTS, 4) describes any assumptions made about the object
class, 5) outlines any changes that are planned for the object class, 6) defines the attributes
encapsulated within the object class, and 7) specifies the operations provided by the object class.
As with ADARTS, passive object classes are allocated within the AO architecture to produce a
system architecture for the design.

Using this OODARTS method, we derived a design for the AGMS from our earlier OMT
analysis. An overview of the Active Object Architecture is presented on pages F-1 through F-5.
The architecture is shown below as Figure 7.

DETECTORS
GAS

STATION
CONTROL

COMMUNICATIONS
LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER
CONTROL

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

LED
CONTROL

Light
Queue

CARD
READER

CONTROL

SWITCH
MONITORING

Card
Inserted
Interrupt

LED
Commands

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Objects
For Each
Pump

Timer
Interrupt

Figure 7. OODARTS Active Object Architecture for the AGMS from an OMT Specification

In Figure 7, each active object is shown as a parallelogram, while each passive object that
is used by multiple active objects is shown as a rectangle. The other notation is also adopted
from ADARTS. The architecture we achieved from the OMT specification, using OODARTS,
was essentially the same as that we devised from the COBRA specification, using ADARTS.
The astute reader will notice some differences between the two architectures; however, these
differences stem from different interpretations of some requirements, not from any difference in
the methods. For example, the ADARTS design included an Alarm task, while the OODARTS
design does not define an Alarm AO. This results because during the COBRA analysis we
assumed that the alarm device needed constant pulsing to sound it, while in the OMT analysis we
assumed that the alarm device was a two-state device that would remain in whatever state it was

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 23

set. The other difference involves LED control. In the COBRA analysis we assumed that if the
customer inserted an unrecognized card, then the card would simply be ejected, while in the
OMT analysis, we assumed that the "Cannot Process Card Light" would be lit before the card
was ejected. The first assumption means that the LED control can be sequentially included with
the Pump Control task, while the second assumption means that two AOs, Card Reader and
Pump Control, share access to the LEDs, and, thus, an LED AO is required as a resource
monitor. Had the same assumptions been made during both the COBRA and OMT analyses,
then the resulting ADARTS and OODARTS architectures would be identical.

A behavior specification is given for each AO shown in Figure 7. These specifications
can be found on pages F-6 through F-31. The interested reader is advised to scan the AO
architecture overview (beginning on F-2), and then to investigate the behavior specifications for
any AOs that appear interesting. Next, we recommend that the reader examine the system
architecture on pages F-52 to F-54, and then to skim the object class specifications for any
passive objects that seem pertinent. In the remainder of this section, we describe how we applied
the OODARTS method to arrive at the design in Appendix F, from the OMT specification in
Appendix D.

Our first step was to examine the object, dynamic, and functional models of our OMT
specification to identify active objects. We applied as many of the ADARTS task structuring
criteria as we could. We envisioned an AO for each object in the OMT specification that
possessed a state chart. This identified the Detectors, the Gas Station, the Communications Link,
the Switch, and the Pump as candidate AOs. Since we envisioned that the Detectors would be
polled on a regular basis, we decided to encapsulate all of the Detectors into a single AO (i.e.,
Detectors on page F-3). We found by examining the OCDs in the functional model that the Gas
Station, Communications Link, and Pump objects received input events from multiple sources,
so we retained these candidates as AOs: Gas Station Control, Communications Link, and Pump
Control. Since the Switch object interacted with external events, we encapsulated the Switch
object within a Switch Monitoring AO.

We then examined the remaining objects from the OMT object model to identify any
additional AOs. The Card Reader object is activated by external events, so we encapsulated the
Card Reader within a Card Reader Control AO. We also found that the LED objects served
multiple AOs, and therefore we encapsulated the LED objects within an LED Control AO to
monitor the LEDs as shared resources. We found that the Gas Dispenser object could be
activated (to run under its own control and complete operations under internally recognized
conditions) and deactivated by the Pump Control AO. For these reasons, we encapsulated the
Gas Dispenser inside a Gas Dispenser Control AO.

We viewed the remaining objects, the various cards and transactions, as data
encapsulation objects that execute sequentially under control of the AOs. The card objects are
used by the Card Reader Control and Pump Control AOs, and the transaction objects are used by
the Pump Control and Gas Dispenser AOs. Although we could have moved the card and
transaction objects inside the Pump Control AO, we chose to design them as passive objects,
external to all AOs, and shared between AOs.

The context diagram from our OMT functional model leads to a natural allocation of
external events and data to particular AOs, and so our next design decisions focused on internal

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 24

communications between AOs. Here, again, the dynamic model and the OCDs from the
functional model helped us make choices. Because the Gas Station Control AO received inputs
asynchronously from the Detectors and Communications Link AOs, we defined an active queue
(AQ), called the Gas Station Control Queue. Similar reasoning, differing only in the specifics,
led us to define the Transmit Messages Queue, the Light Queue, and the Pump Control Queue.
The Card Reader Control AO serves only the Pump Control AO by awaiting Reader Commands
to arrive and then executing them; thus, we chose tightly-coupled communications between the
two AOs. The Gas Dispenser Control AO waits for start and stop Gas Commands from the
Pump Control AO and then executes them; thus, again, we chose tightly-coupled
communications between the two AOs. The details of the messages flowing into the various
AQs and between the various AOs can be mapped readily from the OMT specification. We so
mapped them, and then we documented them as message exchanges within each AO behavior
specification.

Next, we turned our attention to the passive object classes. The allocation of passive
objects among the AOs was, for the most part, decided previously, when we created the AO
architecture. This follows from the fact that both OMT and OODARTS use the object as the
only unit. When we created the AO architecture, we were allocating OMT objects (i.e., passive
objects). The objects were allocated either to an AO, or between several AOs. Any objects that
we did not allocate while developing the AO architecture, we allocated now. For the AGMS
design, we allocated the Alarm object to the Gas Station Control AO, because the Alarm object
coheres sequentially to the Gas Station object.

Since the passive object classes were identified during the analysis, we need only specify,
during the OODARTS design process, each object class. Here, again, most of the work was
accomplished during the analysis. We used the complete object model from the OMT analysis,
amplified by the object dictionary and the object function descriptions, to create the OODARTS
object class specifications shown on pages F-32 through F-51. After documenting the object
class specifications, we updated the AO behavior specifications to reflect particular details of the
operations defined for the passive objects used by each AO.

Next, we updated the AO architecture diagram to reflect our allocation of passive object
classes among AOs. This action yielded a system architecture diagram for the AGMS, as shown
in Figure 8 (and also on page F-54). Here, we identified the two types of card object (Credit
Card, as distinct from Cash Card) and the two types of transaction object (Credit Transaction, as
distinct from Cash Transaction) that are shared among AOs. For each of these shared object
classes, we specified the operations provided by the object class, as well as illustrated which
operations are invoked by which AOs. Where a passive object sends a message to an AO or AQ,
we depicted that as well. As a final step in our OODARTS design for the AGMS, we wrote a
brief overview of the system architecture (see page F-53).

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 25

Timer
Event

Message
Received
Interrupt

Message
Sent
InterruptLink

State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Transmit
Messages
Queue

Gas
Command

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

Light
Queue

Card
Inserted
Interrupt

LED
Commands

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Reader
Command

One Set Of
These Objects
For Each
Pump

Timer
Interrupt

LED Control

Card Reader Control

Switch Monitoring

Pump Control

Gas Dispenser Control

Gas Station ControlDetectors Communications Link

authorize

reject

complete

Credit
 Transaction

Alarm
Gas Station

Pump

LinkSmoke
Detector

Heat
Detector

Switch

Card
Reader

Gas
Dispenser

authorize

reject

complete

Cash
Transaction

set_id_number get_id_number

set_cash_value get_cash_value

set_id_number get_id_number

set_account_number get_account_number

get_limit

get_limit

set_cost_of_gas

set_cost_of_gas

Credit Card

Cash Card

Figure 8. OODARTS System Architecture for the AGMS from an OMT Specification

Although our system architecture keeps AOs separate from the passive objects that they
encapsulate, a more integrated approach is possible. Once we identified active objects from our
OMT specification, we could have added the necessary Create and execute operations to those
objects, transforming them from their passive, OMT form to an active, OODARTS form. This
approach would work well for the Gas Station, Pump, Link, Card Reader, Gas Dispenser, and
Switch objects. (Our design would still benefit from encapsulating multiple instants of Detector
objects into a single AO.) We chose to maintain a separation between the AOs defined in our
OODARTS design and the passive objects identified in our OMT specification. This choice
should enable the reader to see easily how OODARTS was developed from the ADARTS
method.

V. Evaluation Of Results

In this paper we stalked an automated gas station management problem with three
analysis methods and two design approaches. We now approach the weighing station at the
game warden’s shelter. Here we must assess the results of our safari. The rules of the preserve in
which we have hunted allow us to assess our results in our own words, but the game warden

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 26

might come along for a spot check. We imagine that the reader will take on the role of game
warden. We begin with an assessment of the analysis techniques we used.

RTSA proved simple to use. The concept of data flow diagrams is familiar to most
analysts, and even someone without analysis experience can catch on quickly. The concept of
finite state automata is mature. RTSA incorporates finite state automata into structured analysis
using a natural, easily comprehended model, the control transform. The specifications produced
from an RTSA analysis are easy to understand and easy to maintain. On the other hand, RTSA
appears applicable only to small problems. RTSA analysis leads to a large number of small
functions activated by control transforms. While the decomposition techniques supported by
data flow diagrams allow for chunking and aggregating functions, most resulting RTSA
specifications for large problems would be difficult to comprehend. Also, RTSA specifications
point to specific design decisions; thus, RTSA is not solution independent. But, then, none of
the analysis techniques we used are solution independent; RTSA seemed more solution
independent than either COBRA or OMT.

COBRA appeared more useful for analyzing large, real-time problems. The subsystem
decomposition guidelines of COBRA enable a problem to be divided into fairly independent
subsystems. Each subsystem can then be analyzed separately, studied separately, and understood
separately. COBRA builds on the concepts and notation of RTSA. This relationship between
COBRA and RTSA should enable experienced RTSA analysts to begin using COBRA without
much training. COBRA also provides a number of guidelines to help the inexperienced analyst.
These include: 1) guidelines for developing the COBRA environmental model, 2) guidelines for
decomposing a problem into subsystems (or sub-problems), 3) criteria for determining objects
and functions, and 4) procedures for performing behavioral scenario analysis. The COBRA
guidelines help to ensure that COBRA specifications are complete, consistent, and repeatable.

Despite the improvements achieved by COBRA, we noticed some drawbacks to the
technique. For example, COBRA specifications contain redundant information. The behavioral
scenario analysis that develops the state transition diagrams and data/control flow diagrams leads
to two specifications for each state transition diagram and to many instances for some of the data
and control transforms. This provides a means to check the consistency of the analysis, but also
increases the difficulty of maintaining the specification. Another difficulty we experienced while
using COBRA involved functions and objects. Since COBRA allows the specification of both
functions and objects, we often had to decide when to specify a function and when to specify an
object. Even with the criteria included in COBRA, we often found ourselves unsure when to
specify functions and when to use objects. These decisions are important because COBRA is not
solution independent. In fact, COBRA leads toward an object-based implementation, perhaps
imagining a language like Ada for the ultimate implementation. For this reason, we found
COBRA to be more solution-oriented than RTSA.

Where COBRA and RTSA are related analysis techniques, OMT belongs to a different
family. We found the greatest strength of OMT to be the unifying concept of the object model.
The early stages of OMT required us to mine the problem domain for objects, attributes, and
relationships. The object model that resulted from this analysis provides the unifying framework
for the remaining stages of OMT analysis. OMT provides good guidance for identifying objects,
attributes, and relationships, although at first we had difficulty crafting the relationships properly.
Since OMT relies on an object model, we could take full advantage of object-oriented concepts

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 27

such as inheritance and polymorphism. Another positive result from OMT is that functions are
allocated to objects during the analysis, so further consideration of design issues deals only with
objects, not functions. Another strength of OMT appears in the dynamic model. Because OMT
adopts state charts (in the place of state transition diagrams), we could take advantage of a
number of notational and semantic conveniences associated with state charts. We also found that
using OMT led us to an increased use of dynamic models. For example, using RTSA and
COBRA we identified two state transition diagrams, while with OMT we created five state
charts. We even wondered if we might not have been wise to create additional state charts for
the Gas Dispenser and the Card Reader.

While OMT provided some useful improvements over COBRA and RTSA, we found
OMT to contain a number of flaws. Probably the most serious flaw was the lack of integration
between the functional model and the object and dynamic models. We could not readily model
the automated gas station problem as a data flow diagram without the use of control transforms.
Yet, control transforms are not permitted in the OMT functional model. To solve this
shortcoming, we developed an alternate approach using object communication diagrams and
object function diagrams. Our alternate approach allowed us to identify functions and to allocate
functions to objects in our object model. We cannot expect every analyst to develop their own
solution for functional modeling in OMT, but the solution given in the Rumbaugh book will not
always lead to a successful result. Another problem we believe exists with OMT is lack of
scaling. Object models can become quite complex. OMT provides notational devices to divide
an object model among multiple sheets of paper; however, the fundamental complexity of the
model is not improved by such notational devices. Because of this flaw, we believe that OMT
can only be applied to problems of moderate size. Were OMT to introduce a subsystem concept
and then to give guidelines for decomposing a problem into subsystems (as COBRA does), we
believe that OMT would scale to larger problems. A third fault we found with OMT is lack of a
rigorous approach to develop state charts. We were always wondering where we should define a
state chart and where we should not. We also could have benefited from a precise method for
developing each state chart. (Perhaps something similar to the COBRA behavioral scenario
analysis method could be added to OMT.) A final shortcoming we noted with OMT is that
many, if not most, design decisions are made during the analysis. In fact, all road signs from an
OMT specification point to an object-oriented implementation. We were not dismayed by this
outcome because we intended to develop an object-oriented design for the automated gas station
problem. We advise those analysts not heading toward an object-oriented design to avoid OMT
during the analysis.

After we developed our three analysis specifications for the automated gas station
problem, we produced two designs. One design used ADARTS and the other used OODARTS
(a method we devised from ADARTS). Here we consider the results from applying ADARTS
and OODARTS. Remember that we developed the ADARTS design from the COBRA
specification and we produced the OODARTS design from the OMT specification. We begin
with ADARTS.

ADARTS provides a reliable recipe for deriving concurrent designs from RTSA and
COBRA specifications. The resulting design is Ada-based. Since many Ada-based
environments exist on a variety of processors, ADARTS designs can be readily implemented in
Ada. Even in the absence of an Ada compiler and run-time environment, ADARTS designs can

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 28

be mapped onto most real-time executives or operating systems. One possible shortcoming with
ADARTS involves the limited use of information hiding modules (IHMs). ADARTS
encourages IHMs to be restricted to encapsulation of data stores, device interfaces, and state
transition diagrams. Although ADARTS permits a greater use of IHMs, many practical
applications of ADARTS encapsulate objects into IHMs that are allocated inside tasks and
relegate IHMs shared between tasks to a more minor role of encapsulating data stores. Another
possible shortcoming of ADARTS is the requirement that the designer allocate both objects and
functions to tasks. This shortcoming results from the nature of the RTSA and COBRA analysis
techniques, coupled with the fact that ADARTS is Ada-based rather than object-oriented.

We developed OODARTS as an object-oriented extension to ADARTS. OODARTS
assumes an object-oriented support environment, rather than an Ada-based support environment.
For this reason, we had to define a support environment for OODARTS. The environment we
defined combined ADARTS semantics with object-oriented concepts. OODARTS, then,
provides for full, object-oriented designs that lead naturally into an object-oriented programming
solution. Of course, an underlying object-oriented programming model for concurrent systems
must be implemented. No such model is widely accepted nor implemented. Still, we outlined a
means for mapping a concurrent, object-oriented model onto most real-time executives or
operating systems. Our method requires that an object-oriented layer be implemented (using an
object-oriented language) above the real-time execute. Without a run-time environment to
support OODARTS some of the object-oriented features of the design must be discarded. If such
features are discarded, then ADARTS can be used to generate a design from an OMT
specification. Of course, some of the traceability to the original analysis will be lost.
OODARTS yields reasonable, concurrent, object-oriented designs from OMT specifications. In
fact, in our exercise with the automated gas station manager, the design resulting from
COBRA/ADARTS was identical fundamentally to the design resulting from OMT/OODARTS.
In the former case, the design can be easily taken to an Ada implementation. In the latter case,
the design can be directly taken to an object-oriented programming implementation, provided
that an underlying OODARTS run-time environment exists.

VI. Conclusions

Two trends in the computer industry appear at odds. One trend is the growing need for
concurrent and distributed, real-time systems to control an increasingly digital world. The other
trend is the expanding popularity of object-oriented programming (OOP). OOP traditionally has
ignored many practical aspects of system requirements analysis and design. In fact, only in the
last few years have methods for object-oriented analysis and design (OOA and OOD) emerged.
These OOA and OOD methods are intended to provide a smooth path from problem analysis to
programming implementation. Unfortunately, many of the existing object-oriented methods
ignore problems associated with concurrency and distribution and with other requirements of
real-time systems.

In the foregoing paper, we have shown that OOA/OOD/OOP can be used to develop
effective analyses, designs, and implementations for concurrent, real-time problems. We used an
automated gas station management problem as our example. We showed how such a problem

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 29

could be analyzed with some well-known techniques such as RTSA and COBRA. We also
showed how an object-oriented method, OMT, could be used to analyze the problem. We then
showed how ADARTS could be used to produce a concurrent design from a COBRA
specification. We explained how we derived an object-oriented design approach (OODARTS)
from ADARTS and we applied OODARTS to produce a concurrent design from our OMT
specification. The two resulting concurrent designs were identical fundamentally. From this
exercise, we concluded that OOA/OOD/OOP can lead to effective concurrent designs for
solutions to real-time problems. We further concluded that the key to making a smooth
transition from OOD to OOP for a concurrent design is the existence of an underlying
object-oriented, run-time model (implemented in an object-oriented language) for managing
multiple threads of control and inter-object communication and synchronization. Such a model
would be analogous to the Ada run-time environment. Unfortunately, no such object-oriented,
run-time model is accepted widely. Without such a model, moving from a concurrent OOD to an
OOP implementation will remain a difficult art.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

 30

VII. References

[1] Philip A. Laplante, Real-Time Systems Design And Analysis An Engineers Handbook,
IEEE Computer Society Press: Los Alamitos, CA, 1993, 339 pages.

[2] P.T. Ward and S. J. Mellor, Structured Development for Real-Time Systems, Volumes I,
II, and III, Yourdon Press, New York, 1985 - 1986.

[3] Hassan Gomaa, Course Notes On Software Design Methods, Parts I and II, George
Mason University, Fall Semester 1992, Chapter 5: Design Approach for Real-Time
Systems.

[4] David A. Watt, Brian A. Wichmann, and William Findlay, ADA [sic] Language and
Methodology, Prentice-Hall: Englewood Cliffs, NJ, 1987, 518 pages.

[5] Hassan Gomaa, Course Notes On Software Design Methods, Parts III and IV, George
Mason University, Fall Semester 1992, Chapter 14: Analysis and Modeling for
Concurrent and Real-Time Systems.

[6] Hassan Gomaa, Course Notes On Software Design Methods, Parts III and IV, George
Mason University, Fall Semester 1992, Part III: A Design Approach for concurrent and
Real-Time Systems (ADARTS) and Part IV: ADARTS Case Studies.

[7] Bjarne Stroustrup, The C++ Programming Language, Second Edition, Addison-Wesley:
Reading, Mass., 1991 (reprinted with corrections in 1992), 669 pages.

[8] Bertrand Meyer, Eiffel: The Language, Prentice-Hall International: Hemel Hempstead,
United Kingdom, 1992, 594 pages.

[9] Bertrand Meyer, Object-oriented Software Construction, Prentice-Hall International:
Hemel Hempstead, United Kingdom, 1988, 534 pages.

[10] Grady Booch, Object-Oriented Design With Applications, Benjamin/Cummings,
Redwood

City, CA, 1991, 580 pages.

[11] Sally Shlaer and Stephen J. Mellor, Object Lifecycles, Modeling the World in States,
Yourdon Press: Englewood Cliffs, NJ, 1992, 251 pages.

[12] James Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice-Hall:
Englewood

Cliffs, NJ, 1991, 500 pages.

[13] Peter Coad and Edward Yourdon, Object-Oriented Analysis, Second Edition, Yourdon

Object-Oriented Analysis and Design Of Concurrent, Real-Time Systems May 31, 1998

31

Press: Englewood Cliffs, NJ, 1991, 233 pages.

[14] John Palmer, Object-oriented analysis and polymorphism: Gross concept neglect, Object
Magazine, March-April, 1993, pp. 34-36.

Object-Oriented Analysis and Design Of Concurrent, Real-Time Systems May 31, 1998

32

 APPENDIX B. AUTOMATED GAS STATION
 MANAGER RTSA SPECIFICATION

AUTOMATED GAS STATION MANAGER

RTSA DATA/CONTROL FLOW DIARGRAMS

B-1

AGMS

0

COMMUNICA-
TIONS
LINK

LEDS

SWITCH

ALARM

GAS
DISPENSER

CARD
READER

DETECTORS

LED
On/Off Commands

Switch
On/Off Interrupts

Alarm
On/Off Commands

Sensor Data and
Commands

B-2 AGMS CONTEXT DIAGRAM

Card Data,
Inserted Interrupts,
Read, Write, and
Eject Commands

Incoming Messages
Outgoing Messages and
Link State Interrupts

Dispenser Commands,
Display
Data, and Meter Data

Manage
Pump

1

Incoming Messages
Outgoing Messages and
Link State Interrupts

LED On/Off
Commands

Switch On/Off
Interrupts

B-3 AGMS DECOMPOSITION INTO SUBSYSTEMS

Manage
Gas Station

3

Manage
Communicat

ions
Link

2

Link
Up

message(Credit Transaction)

Authorized

Link
Down

Not Authorized

Sensor Data
and Commands

Dispenser Commands,
Display Data, and
Meter Data

Card Data, Inserted
Interrupts, Read,
Write and Eject
Commands

message(Authorization)

Open

Close

Restart

Shutdown

Monitor
Card

Reader

1.3

Reject
Transaction

1.7

Complete
Transaction

1.6

Dispense
Gas

1.5

Authorize
Transaction

1.4

Control
Pump

1.1

Credit Card Inserted

Close
Open

Authorized

Not Authorized

T3

T2

E1/D1
T1

Eject Command

Write Command and Data

Message(Credit
 Transaction)

B-4 1 MANAGE PUMP CONTROL/DATA FLOW DIAGRAM

Cash Card Inserted

Inserted Interrupt

Card Data

Read Command

LED On/Off
Commands

Card
Information

Monitor
Switch

1.2

Switch On/Off
Interrupts

Switch On

Switch Off

Cash
Okay

LED On/Off
Command

message(Authorization)

Stopped

Dispenser
Commands

Display
Data

Meter
Data

Transaction

LED On/Off Command

Cash Not
Okay

Establish
Transaction

1.8

T4

Add
to

Rcv List
2.1

Decode
Message
Header

2.2

Authorized

Shutdown

Restart

Add
to

Tx List
2.4

Send
to

Link
2.5

Analyze
Link
State
2.3

RCV LIST

TX LIST

LINK STATE INTERRUPT Link Down

Link Up

Outgoing Message

new link status

message(Alarm)

B-5 2 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

Wakeup

Incoming
Message

Not Authorized

message(Authorization)

message(Credit
Transaction)

Wakeup

Transmit
Message

2.5.1

Save
Credit

Transactions
2.5.2

Restore
Credit

Transactions
2.5.3

TX LIST CREDIT TRANSACTION
LIST

Wakeup

Outgoing Message

B-6 2.5 Send to Link DATA FLOW DIAGRAM

new link status

Save

Restore

Monitor
Detectors

3.2

Sound
Alarm

3.3

Reset
Alarm

3.4

Send
Alarm

Message

3.5

Send
Opens

3.6

Send
Closes

3.7

Control
Gas

Station

3.1

Threshold Exceeded

Link Down
Link up

Restart

Shutdown

T1

T2

T3

T4

T5
Sensor Data
and Commands

Closes

Alarm On Command

B-7 3 MANAGE GAS STATION CONTROL/DATA FLOW DIAGRAM

E1/D1

AGMS DATA DICTIONARY

Alarm Commands

0 is TURN OFF
1 is TURN ON

Card Data : RECORD

-- Read from an inserted Card

1. identification number : ASCII STRING -- Determines second field
2. account number : ASCII STRING -- If Credit Card
3. cash value : ASCII STRING -- If Cash Card

Card Information: RECORD

--Holds the data read from a Card inserted into the Card Reader

1. identification number: NUMERIC
2. account number: NUMERIC -- Valid for Credit Card Only
3. cash value: INTEGER -- Valid for Cash Card Only

Card Read Commands

0 is Eject
1 is Read (Input Data is a Card Data Record)
2 is Write (Output Data is a Card Data Record)

CREDIT TRANSACTION LIST: FILE

--A File containing saved Credit Transaction Messages

Dispenser Commands

0 is STOP GAS
1 is START GAS
2 is READ METER (Input data is Meter Data)
3 is WRITE DISPLAY (Output data is Display Data)

Display Data: RECORD

Appendix B. RTSA Specification Data Dictionary

B-9

--Contains two values to be displayed

1. display gallons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

Message: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE

0 is SHUTDOWN COMMAND
1 is RESTART COMMAND
2 is Credit Transaction
3 is Alarm
4 is Authorization request
5 is Authorization reply

4. Optional additional parameters determined by Type.
For Credit Transaction:

Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)

For Authorization Request
Pump ID: INTEGER
account number: NUMERIC

For Authorization Reply
Pump ID: INTEGER
response: BOOLEAN

0 is Not Authorized
1 is Authorized

Meter Data: REAL

-- Data read from the Gas Dispenser’s meter

new link status: INTEGER

-- The new status of the communications link. Values can be 0, no change, 1, link up, or
-- -1, link down

Appendix B. RTSA Specification Data Dictionary

B-10

RCV LIST: LINKED_LIST

-- This is the queue of messages received on the Communications Link, but not yet
-- processed.

Sensor Commands

0 is Enable
1 is Disable
2 is Read (Input Data is Sensor Data)

Sensor Data: DEVICE DEPENDENT

-- The raw input from a sensor device. The form is dependent on the specific sensor.

Transaction : RECORD

1. STATION ID : INTEGER
2. PUMP ID : INTEGER
3. cost of gas : INTEGER
4. limit : INTEGER

TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

Appendix B. RTSA Specification Data Dictionary

B-11

AGSM Mini-Specifications
1.2 Monitor Switch

LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT
IF ACTIVATE INTERRUPT

THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD

ENDIF
END FOREVER LOOP

1.3 Monitor Card Reader

LOOP FOREVER
WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
 THEN READ cash value,
 store cash value in Card Information,

Send Cash Card Inserted Event to Pump STD
ELSEIF identification number is Corporate Credit Card

THEN READ account number,
store account number in Card Information,
Send Credit Card Inserted Event to Pump STD

ELSE CALL Reject Transaction
ENDIF

END LOOP

1.4 Authorize Transaction

IF Card Information.identification number is for a Cash Card
THEN

IF cash value is not positive
THEN Output LED ON COMMAND to Cash Value Used LED

Send Cash Not Okay Event to Pump STD
Wait 10 Seconds
Output EJECT COMMAND to Card Reader
Output LED OFF COMMAND to Cash Value Used LED

ELSE Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to cash value
Send Cash Okay Event to Pump STD

ENDIF
ELSE Authorization Request := BUILD (Remote Central Facility Address, Station ID,

Pump ID, Card Information.account number)
CALL Add to Tx List(Authorization Request)

ENDIF

Appendix B. RTSA Specification Data Dictionary

B-12

1.5 Dispense Gas

Send START COMMAND to Gas Dispenser
LOOP FOREVER UNTIL Disabled from Pump STD

CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon

 >= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
Set Transaction.cost of gas to amount dispensed/100 * price per gallon
Send Stopped to Pump STD
RETURN

Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

Update Display

display gallons := amount dispensed/100
display cost := display gallons * price per gallon
Output display gallons to GALLONS DISPLAY
Output display cost to COST DISPLAY

1.6 Complete Transaction

IF Card Information.identification number is for Credit Card
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump

ID, account number,
amount dispensed/100*price per gallon)

CALL Add to TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100*price per gallon)

Output WRITE COMMAND with Card Information.identification number and
new cash value to Cash Card

ENDIF
Output EJECT COMMAND to Card Reader

1.7 Reject Transaction

Output LED ON COMMAND to Cannot Process Card LED
Output EJECT COMMAND to Card Reader
Wait 10 Seconds
Output LED OFF COMMAND to Cannot Process Card LED

Appendix B. RTSA Specification Data Dictionary

B-13

1.8 Establish Transaction

Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to zero

2.1 Add to Rcv List

Accept message from Link
Add message to RCV LIST
CALL Decode Message Header

2.2 Decode Message Header

IF message is a RESTART COMMAND
THEN generate a Restart event for the Gas Station STD

ELSEIF message is a SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD

ELSEIF message is an authorization reply
THEN IF message contains authorization

THEN generate an Authorized event for the appropriate
Pump STD

ELSE generate an Unauthorized event for the appropriate
Pump STD

ENDIF
ENDIF
Remove message from the RCV LIST

2.3 Analyze Link State

IF LINK STATE is UP and was DOWN
 THEN CALL Transmit Message with new link state set to UP
ELSIF LINK STATE is DOWN and was UP
 THEN CALL Transmit Message with new link state set to DOWN
ELSE CALL Transmit Message with new link state set to NO CHANGE

2.4 Add to Tx List(message)

Add message to TX LIST
CALL Transmit Message(NO CHANGE)

2.5.1 Transmit Message(new link state)

IF new link state is UP
THEN CALL Restore Credit Transactions

remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST

ELSIF new link state is DOWN
THEN CALL Save Credit Transactions

ELSIF new link state is NO CHANGE
THEN remove any previously transmitted message, if any, from TX LIST

start transmission of next message, if any, from TX LIST

Appendix B. RTSA Specification Data Dictionary

B-14

ENDIF

2.5.2 Save Credit Transactions

FOR EVERY message on TX LIST
IF message is a Credit Transaction

THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST

END FOR EVERY message on TX LIST LOOP

2.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk

END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

3.2 Monitor Sensors

LOOP FOREVER UNTIL Disabled from Gas Station STD
READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
compute delta from Threshold using processed sensor data and Threshold
IF previous delta was below Threshold and new delta is above Threshold

THEN Send Threshold Exceeded Event to Gas Station STD
ENDIF

END FOREVER LOOP

3.3 Sound Alarm

Send TURN ON COMMAND to Alarm

3.4 Reset Alarm

Send TURN OFF COMMAND to Alarm

3.5 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station ID)
CALL Add to Tx List(Alarm Message)

3.6 Send Close

LOOP FOR EVERY Pump
Send Close to Pump

END LOOP

3.7 Send Open

LOOP FOR EVERY PUMP

Appendix B. RTSA Specification Data Dictionary

B-15

Send Open to Pump
END LOOP

Appendix B. RTSA Specification Data Dictionary

B-16

Dispensing

B-19 1.1 Control Pump STATE TRANSITION DIAGRAM

Open

Close

Not
Authorized

Credit Card
InsertedCash Card

Inserted

Authorized
[Switch is not On]

Authorized
[Switch is On]

Switch On

Stopped

Switch Off
Close

Close

Close

Stopped

Closed Opened

Waiting
Authorization

Authorized

Waiting On
Done

Waiting On
Stopped

Cash Not
Okay

Cash Okay
[Switch is not On]

Cash Okay
[Switch is On]

TI

T1

T3

T3

T4

T3

T2

T4, E1

E1

E1

T2

D1 D1

T1 Authorize Transaction
T2 Complete Transaction
T3 Reject Transaction
T4 Establish Transaction
E1 Enable Dispense Gas
D1 Disable Dispense Gas

Operating

Disabled

No Link

Shutdown

Restart

Threshold
Exceeded

Restart

Threshold Exceeded

Link Down
Link Up

Threshold Exceeded

B-20 3.1 CONTROL GAS STATION STATE TRANSITION DIAGRAM

T1, T3

T1, T3, T4

T1, T3

T2, T4

T5

T4

T5

T4

T1 Sound Alarm
T2 Reset Alarm
T3 Send Alarm Message
T4 Send Opens
T5 Send Closes

 APPENDIX C. AUTOMATED GAS STATION
 MANAGER COBRA SPECIFICATION

Pump
Subsystem

1

COMMUNICA-
TIONS

SUBSYSTEM
LEDS

SWITCH

GAS
DISPENSER

CARD
READER

GAS
STATION

SUBSYSTEM

LED
On/Off Commands

Switch
On/Off Interrupts

C-4 PUMP SUBSYSTEM CONTEXT DIAGRAM

Card Data,
Inserted Interrupts,
Read, Write, and
Eject Commands

Dispenser Commands,
Display
Data, and Meter Data

message
(Authorization)

Open

Close

message
(Credit
Transaction)

Authorized

Not
Authorized

COMMUNICA
TIONS

SUBSYSTEM
2

COMMUNICA-
TIONS
LINK

PUMP
SUBSYSTEM

GAS
STATION

SUBSYSTEM

C-5 COMMUNICATIONS SUBSYSTEM CONTEXT DIAGRAM

Incoming Messages
Outgoing Messages and
Link State Interrupts

message
(Authorization)

message
(Credit
Transaction)

Authorized

Not Authorized

message
(Alarm)

Link
Up

Link
DownRestart

Shutdown

GAS
STATION

SUBSYSTEM
3

PUMP
SUBSYSTEM

ALARM

COMMUNICA
TIONS

SUBSYSTEM

DETECTORS

Alarm
On/Off
Commands

Sensor Data and
Commands

C-6 GAS STATION SUBSYSTEM CONTEXT DIAGRAM

Close Open

Link
Up

Link
Down

Restart

Shutdown

Pump
Subsystem

1

Incoming Messages
Outgoing Messages and
Link State Interrupts

LED On/Off
Commands

Switch On/Off
Interrupts

C-9 SUBSYSTEM LEVEL D/CFD

Gas Station
Subsystem

3

Communicat
ions

Subsystem
2

Link
Up

message(Credit Transaction)

Authorized

Link
Down

Not Authorized

Sensor Data
and Commands

Dispenser Commands,
Display Data, and
Meter Data

Card Data, Inserted
Interrupts, Read,
Write and Eject
Commands

message(Authorization)

Open

Close

Restart

Shutdown

Card
Reader

1.3

LEDs
1.4

Gas
Dispenser

1.5

Pump
Control

1.1

Credit Card Inserted

Close
Open

Authorized

Not Authorized

LED number

E1/D1

Eject Command

Write Command and Data

Message(Credit
 Transaction)

C-9 PUMP SUBSYSTEM TOP-LEVEL DATA/CONTROL FLOW DIAGRAM

Cash Card Inserted

Inserted Interrupt

Card Data

Read Command

Card
Information

Switch

1.2

Switch On/Off
Interrupts

Switch On

Switch Off

message(Authorization)

Stopped

Dispenser
Commands

Display
Data

Meter
Data

Transaction

LED On/Off Command

Eject Command

Eject Command

write(data)

Eject

Reject
Transaction

1.1.5

Complete
Transaction

1.1.4

Authorize
Transaction

1.1.2

Control
Pump

1.1.1

Credit Card Inserted

Close
Open

Authorized

Not Authorized

T3

T2

E1/D1
T1

Eject

write(data)

Message(Credit
 Transaction)

C-10 1.1 Pump Control DATA/CONTROL FLOW DIAGRAM

Cash Card Inserted

Switch On

Switch Off

Cash
Okay

LED(number) message(Authorization)

Stopped

LED (number)

Cash Not
Okay

Establish
Transaction

1.1.3

T4

Transaction

Card
Information

Eject

Transaction

Card
Information

PUMP SUBSYSTEM DATA DICTIONARY

Card Data : RECORD

-- Read from an inserted Card

1. identification number : ASCII STRING -- Determines second field
2. account number : ASCII STRING -- If Credit Card
3. cash value : ASCII STRING -- If Cash Card

Card Information: RECORD

--Holds the data read from a Card inserted into the Card Reader

1. identification number: NUMERIC
2. account number: NUMERIC -- Valid for Credit Card Only
3. cash value: INTEGER -- Valid for Cash Card Only

Card Reader Commands

0 is Eject
1 is Read (Input Data is a Card Data Record)
2 is Write (Output Data is a Card Data Record)

Dispenser Commands

0 is STOP GAS
1 is START GAS
2 is READ METER (Input data is Meter Data)
3 is WRITE DISPLAY (Output data is Display Data)

Display Data: RECORD

--Contains two values to be displayed

1. display gallons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

C-11

LED(number) : INTEGER

0 is Cash Value Used
1 is Cannot Process Card

Message: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE

2 is Credit Transaction
4 is Authorization request

4. Optional additional parameters determined by Type.
For Credit Transaction:

Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)

For Authorization Request
Pump ID: INTEGER
account number: NUMERIC

Meter Data: REAL

-- Data read from the Gas Dispenser’s meter

Transaction : RECORD

1. STATION ID : INTEGER
2. PUMP ID : INTEGER
3. cost of gas : INTEGER
4. limit : INTEGER

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

C-12

Pump Subsystem Mini-Specifications
1.1.2 Authorize Transaction

IF Card Information.identification number is for a Cash Card
THEN

IF cash value is not positive
THEN CALL LED(Cash Value Used)

Send Cash Not Okay Event to Pump STD
Wait 10 Seconds
Call Card Reader.Eject

ELSE Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to cash value
Send Cash Okay Event to Pump STD

ENDIF
ELSE Authorization Request := BUILD (Remote Central Facility Address, Station ID,

Pump ID, Card Information.account number)
CALL Add to Tx List(Authorization Request)

ENDIF

1.1.3 Establish Transaction

Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to zero

1.1.4 Complete Transaction

IF Card Information.identification number is for Credit Card
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump

ID, account number,
amount dispensed/100*price per gallon)

CALL Add to TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100*price per gallon)

CALL Card Reader.write(Card Information.identification number, new cash
value)

CALL Card Reader.Eject
ENDIF

1.1.5 Reject Transaction

CALL LED(Cannot Process Card)
CALL Card Reader.Eject

1.2 Switch

LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

C-13

IF ACTIVATE INTERRUPT
THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD

ENDIF
END FOREVER LOOP

1.3 Card Reader

LOOP FOREVER A
LOOP FOREVER B

WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
 THEN READ cash value,
 store cash value in Card Information,

Send Cash Card Inserted Event to Pump STD
BREAK LOOP B

ELSEIF identification number is Corporate Credit Card
THEN READ account number,

store account number in Card Information,
Send Credit Card Inserted Event to Pump STD
BREAK LOOP B

ELSE OUTPUT EJECT COMMAND to Card Reader
ENDIF

END LOOP B
LOOP FOREVER C

WAIT for Card Reader Request
IF Request is Eject THEN OUTPUT EJECT COMMAND to Card Reader

 BREAK LOOP C
IF Request is write with data THEN OUTPUT WRITE COMMAND with

 data to Card Reader
END LOOP C

END LOOP A

1.4 LEDs

IF LED(number) is Cash Value Used
THEN OUTPUT LED ON COMMAND to LED #1

WAIT 10 Seconds
OUTPUT LED OFF COMMAND to LED #1

ELSIF LED(number) is Could Not Process Card
THEN OUTPUT LED ON COMMAND to LED #2

WAIT 10 Seconds
OUTPUT LED OFF COMMAND to LED #2

ENDIF

1.5 Gas Dispenser

Send START COMMAND to Gas Dispenser

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

C-14

LOOP FOREVER UNTIL Disabled from Pump STD
CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon

 >= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
Set Transaction.cost of gas to amount dispensed/100 * price per gallon
Send Stopped to Pump STD
RETURN

Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

Update Display

display gallons := amount dispensed/100
display cost := display gallons * price per gallon
Output display gallons to GALLONS DISPLAY
Output display cost to COST DISPLAY

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

C-15

Add
to

Rcv List
2.1

Decode
Message
Header

2.2

Authorized

Shutdown

Restart

Add
to

Tx List
2.4

Send
to

Link
2.5

Analyze
Link
State
2.3

RCV LIST

TX LIST

LINK STATE INTERRUPT Link Down

Link Up

Outgoing Message

new link status

message(Alarm)

B-5 2 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

Wakeup

Incoming
Message

Not Authorized

message(Authorization)

message(Credit
Transaction)

Wakeup

Transmit
Message

2.5.1

Save
Credit

Transactions
2.5.2

Restore
Credit

Transactions
2.5.3

TX LIST CREDIT TRANSACTION
LIST

Wakeup

Outgoing Message

B-6 2.5 Send to Link DATA FLOW DIAGRAM

new link status

Communications Subsystem Data Dictionary

CREDIT TRANSACTION LIST: FILE

--A File containing saved Credit Transaction Messages

Message: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE

0 is SHUTDOWN COMMAND
1 is RESTART COMMAND
2 is Credit Transaction
3 is Alarm
4 is Authorization request
5 is Authorization reply

4. Optional additional parameters determined by Type.
For Credit Transaction:

Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)

For Authorization Request
Pump ID: INTEGER
account number: NUMERIC

For Authorization Reply
Pump ID: INTEGER
response: BOOLEAN

0 is Not Authorized
1 is Authorized

new link status: INTEGER

-- The new status of the communications link. Values can be 0, no change, 1, link up, or
-- -1, link down

RCV LIST: LINKED_LIST

-- This is the queue of messages received on the Communications Link, but not yet
-- processed.

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

C-25

TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

C-26

Communications Subsystem Mini-Specifications
2.1 Add to Rcv List

Accept message from Link
Add message to RCV LIST
CALL Decode Message Header

2.2 Decode Message Header

IF message is a RESTART COMMAND
THEN generate a Restart event for the Gas Station STD

ELSEIF message is a SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD

ELSEIF message is an authorization reply
THEN IF message contains authorization

THEN generate an Authorized event for the appropriate
Pump STD

ELSE generate an Unauthorized event for the appropriate
Pump STD

ENDIF
ENDIF
Remove message from the RCV LIST

2.3 Analyze Link State

IF LINK STATE is UP and was DOWN
 THEN CALL Transmit Message with new link state set to UP
ELSIF LINK STATE is DOWN and was UP
 THEN CALL Transmit Message with new link state set to DOWN
ELSE CALL Transmit Message with new link state set to NO CHANGE

2.4 Add to Tx List(message)

Add message to TX LIST
CALL Transmit Message(NO CHANGE)

2.5.1 Transmit Message(new link state)

IF new link state is UP
THEN CALL Restore Credit Transactions

remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST

ELSIF new link state is DOWN
THEN CALL Save Credit Transactions

ELSIF new link state is NO CHANGE
THEN remove any previously transmitted message, if any, from TX LIST

start transmission of next message, if any, from TX LIST
ENDIF

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

C-27

2.5.2 Save Credit Transactions

FOR EVERY message on TX LIST
IF message is a Credit Transaction

THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST

END FOR EVERY message on TX LIST LOOP

2.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk

END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

C-28

Detector
Array

3.2

Alarm

3.3

Send
Alarm

Message

3.4

Send
Opens

3.5

Send
Closes

3.6

Control
Gas

Station

3.1

Threshold Exceeded

Link Down
Link up

Restart

Shutdown

E1/D1

T1

T2

T3
Sensor Data
and Commands

Closes

Alarm On/Off Commands

C-27 3 GAS STATION SUBSYSTEM TOP-LEVEL CONTROL/DATA FLOW DIAGRAM

E2/D2

Gas Station Subsystem Data Dictionary

Alarm Commands

0 is TURN OFF
1 is TURN ON

Message: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE

3 is Alarm
4. Optional additional parameters determined by Type.

Sensor Commands

0 is Enable
1 is Disable
2 is Read (Input Data is Sensor Data)

Sensor Data: DEVICE DEPENDENT

-- The raw input from a sensor device. The form is dependent on the specific sensor.

Appendix C. COBRA Specification Gas Station Subsystem Data Dictionary

C-28

Gas Station Subsystem Mini-Specifications
3.2 Detector Array

WHEN Enabled
LOOP UNTIL Disabled from Gas Station STD

READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
compute delta from Threshold using processed sensor data and Threshold
IF previous delta was below Threshold and new delta is above Threshold

THEN Send Threshold Exceeded Event to Gas Station STD
ENDIF

END LOOP

3.3 Alarm

WHEN Enabled
LOOP UNTIL Disabled from Gas Station STD

OUTPUT ON COMMAND to Alarm
END LOOP

OUTPUT OFF COMMAND to Alarm

3.4 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station ID)
CALL Add to Tx List(Alarm Message)

3.5 Send Close

LOOP FOR EVERY Pump
Send Close to Pump

END LOOP

3.6 Send Open

LOOP FOR EVERY PUMP
Send Open to Pump

END LOOP

Appendix C. COBRA Specification Gas Station Subsystem Data Dictionary

C-29

Dispensing

C-16 1.1 CONTROL PUMP STATE TRANSITION DIAGRAM

Open

Close

Not
Authorized

Credit Card
InsertedCash Card

Inserted

Authorized
[Switch is not On]

Authorized
[Switch is On]

Switch On

Stopped

Switch Off
Close

Close

Close

Stopped

Closed Opened

Waiting
Authorization

Authorized

Waiting On
Done

Waiting On
Stopped

Cash Not
Okay

Cash Okay
[Switch is not On]

Cash Okay
[Switch is On]

TI

T1

T3

T3

T4

T3

T2

T4, E1

E1

E1

T2

D1 D1

T1 Authorize Transaction
T2 Complete Transaction
T3 Reject Transaction
T4 Establish Transaction
E1 Enable Gas Dispenser
D1 Disable Gas Dispenser

Operating

Disabled

No Link

Shutdown

Restart

Emergency

Threshold
Exceeded

Restart

Threshold Exceeded

Link Down
Link Up

Threshold Exceeded

C-30 3.1 Control Gas Station STATE TRANSITION
DIAGRAM

E1, D2, T1

E1, D2, T3, T1

E1, D2, T1

D1, E2, T2

T3

T2

T3

T2

T1 Send Alarm Message
T2 Send Opens
T3 Send Closes
E1 Enable Alarm
D1 Disable Alarm

AGMS Scenario Event Descriptions

What follows are narrative descriptions of each of the twenty-one scenarios depicted in the
following figures on pages C-32 through C-52. These scenarios were used to develop the state
transition diagrams for the Pump (C-53) and the Gas Station (C-54).

Scenario #1 - Exhausted Cash Card Inserted By The Customer (C-32)

The customer inserts a cash card into the card reader causing an Inserted Interrupt (S1-1). The
card reader reads the data from the cash card, stores that information (S1-2) and then generates a
Cash Card Inserted (S1-3) event for the Control Pump STD. Control Pump triggers (S1-4) a
function to authorize the cash transaction. Authorize Transaction examines the Card Information
(S1-5), sees that the cash card is exhausted, lights the Cash Value Used LED (S1-6), ejects the
cash card (S1-7), and generates a Cash Not Okay (S1-8) event for the Control Pump STD.

Scenario #2 - Valid Cash Card Inserted By The Customer (C-33)

The customer inserts a cash card into the card reader causing an Inserted Interrupt (S2-1). The
card reader reads the data from the cash card, stores that information (S2-2) and then generates a
Cash Card Inserted (S2-3) event for the Control Pump STD. Control Pump triggers (S2-4) a
function to authorize the cash transaction. Authorize Transaction examines the Card Information
(S2-5), sees that the cash card is valid, creates a cash transaction (S2-6), generates a Cash Okay
(S2-7) event for the Control Pump STD. Then, if the pump switch is ON, the Control Pump
STD enables the Gas Dispenser (S2-8).

Scenario #3 - Corporate Credit Card Inserted By The Customer (C-34)

The customer inserts a corporate credit card into the card reader causing an Inserted Interrupt
(S3-1). The card reader reads the data from the credit card, stores that information (S3-2) and
then generates a Credit Card Inserted (S3-3) event for the Control Pump STD. Control Pump
triggers (S3-4) a function to authorize the credit transaction. Authorize Transaction extracts the
account number from the Card Information (S3-5) and then sends an Authorization Request
message to the Remote Central Facility (S3-6).

Scenario #4 - Gas Dispenser Switch Set To On By Customer After The Transaction Has Been
Authorized (C-35)

The customer moves the pump switch to the ON position, generating a Switch On Interrupt
(S4-1) at the Switch object. The Switch object then generates a Switch On event (S4-2) for the
Control Pump STD. If the customer’s transaction has already been authorized, then the Control
Pump STD enables the Gas Dispenser (S4-3). The Gas Dispenser turns on the dispenser
mechanism (S4-4) and then cycles through its dispensing operations, reading the Meter Data
(S4-5) and writing the Display Data (S4-6).

Appendix C. COBRA Specification Event Scenario Descriptions

C-31-1

Scenario #5 - Gas Dispenser Switch Set To On By Customer Before The Transaction Has
Been Authorized (C-36)

The customer moves the pump switch to the ON position, generating a Switch On Interrupt
(S5-1) at the Switch object. The Switch object then generates a Switch On event (S5-2) for the
Control Pump STD. Because the transaction has not yet been authorized, the Control Pump STD
simply remembers that the switch is ON.

Scenario #6 - Gas Dispenser Switch Set To Off By Customer (C-37)

The customer moves the pump switch to the OFF position, generating a Switch Off Interrupt
(S6-1) at the Switch object. The Switch object then generates a Switch Off event (S6-2) for the
Control Pump STD. If gas was not being dispensed, the Control Pump STD simply remembers
that the switch is OFF. If gas was being dispensed, the Control Pump STD disables the Gas
Dispenser (S6-3). The Gas Dispenser then turns off the dispenser mechanism (S6-4), reads the
final value of the Meter Data (S6-5) and displays the final Display Data (S6-6).

Scenario #7 - Gas Dispenser Stops For Any Reason When A Cash Transaction Was
Being Processed (C-38)

The Gas Dispenser generates a Stopped event (S7-1) for the Control Pump STD. The Control
Pump STD then triggers a Complete Transaction operation (S7-2). The Complete Transaction
operation extracts the cash value from the Card Information (S7-3) and the cost of gas from the
Transaction (S7-4), determines the new cash value and writes it to the cash card (S7-5), and then
ejects the cash card (S7-6).

Scenario #8 - Gas Dispenser Stops For Any Reason When A Credit Transaction Was Being
Processed (C-39)

The Gas Dispenser generates a Stopped event (S8-1) for the Control Pump STD. The Control
Pump STD then triggers a Complete Transaction operation (S8-2). The Complete Transaction
operation extracts the account number from the Card Information (S8-3) and the cost of gas from
the Transaction (S8-4), sends a Credit Transaction message to the Remote Central Facility
(S8-5), and then ejects the credit card (S8-6).

Scenario #9 - Incoming Authorization Reply With Authorized, Gas Dispenser Switch Is Not
On (C-40)

An incoming message arrives on the communications link (S9-1) and is added to the receive list
(S9-2). The decode message function is invoked (S9-3) to extract the message from the receive
list (S9-4) and to decode the message and generate an Authorized event (S9-5) for the
appropriate Control Pump STD. The Control Pump STD triggers (S9-6) a function to establish a
credit transaction (S9-7).

Appendix C. COBRA Specification Event Scenario Descriptions

C-31-2

Scenario #10 - Incoming Authorization Reply With Authorized, Gas Dispenser Switch Is
On (C-41)

An incoming message arrives on the communications link (S10-1) and is added to the receive list
(S10-2). The decode message function is invoked (S10-3) to extract the message from the
receive list (S10-4) and to decode the message and generate an Authorized event (S10-5) for the
appropriate Control Pump STD. The Control Pump STD triggers (S10-6) a function to establish
a credit transaction (S10-7). The Control Pump STD then enables (S10-8) the Gas Dispenser
which subsequently turns on the dispenser mechanism (S10-9) and cycles through the dispensing
operation, reading the Meter Data (S10-10) and writing the Display Data (S10-11).

Scenario #11 - Incoming Authorization Reply With Not Authorized (C-42)

An incoming message arrives on the communications link (S11-1) and is added to the receive list
(S11-2). The decode message function is invoked (S11-3) to extract the message from the
receive list (S11-4) and to decode the message and generate a Not Authorized event (S11-5) for
the appropriate Control Pump STD. The Control Pump STD triggers (S11-6) a function to reject
the transaction. The Reject Transaction function lights the Cannot Process Card LED (S11-7) and
ejects the card (S11-8).

Scenario #12 - Incoming Restart When Station Was Previously Shutdown By Remote Central
Facility (C-43)

An incoming message arrives on the communications link (S12-1) and is added to the receive list
(S12-2). The decode message function is invoked (S12-3) to extract the message from the
receive list (S12-4) and to decode the message and generate a Restart event (S12-5) for the Gas
Station STD. The Gas Station STD triggers (S12-6) a function to send Open events (S12-7) to
each Pump in the station.

Scenario #13 - Incoming Restart When Station Was Previously Shutdown By Emergency
(C-44)

An incoming message arrives on the communications link (S13-1) and is added to the receive list
(S13-2). The decode message function is invoked (S13-3) to extract the message from the
receive list (S13-4) and to decode the message and generate a Restart event (S13-5) for the Gas
Station STD. The Gas Station STD disables (S13-7) the Alarm, enables (S13-9) the Detector
Array, and triggers (S13-10) a function to send Open events (S13-11) to each Pump in the
station.

Scenario #14 - Incoming Shutdown From Remote Central Facility (C-45)

An incoming message arrives on the communications link (S14-1) and is added to the receive list
(S14-2). The decode message function is invoked (S14-3) to extract the message from the
receive list (S14-4) and to decode the message and generate a Shutdown event (S14-5) for the
Gas Station STD. The Gas Station STD triggers (S14-6) a function to send Close events (S14-7)
to each Pump in the station.

Appendix C. COBRA Specification Event Scenario Descriptions

C-31-3

Scenario #15 - Pump Receives A Close When The Pump Is Idle (C-46)

A Close event (S15-1) arrives at the Control Pump STD. Since the pump is idle, the Control
Pump STD simply moves into the closed state.

Scenario #16 - Pump Receives Close While Permission To Dispense Gas Is Pending (C-47)

A Close event (S16-1) arrives at the Control Pump STD. The Control Pump STD triggers
(S16-2) a reject transaction operation which lights (S16-3) the Cannot Process Card LED and
ejects the card (S16-4).

Scenario #17 - Pump Receives Close While Dispensing Gas (C-48)

A Close event (S17-1) arrives at the Control Pump STD. Since gas was being dispensed, the
Control Pump STD disables the Gas Dispenser (S17-2). The Gas Dispenser then turns off the
dispenser mechanism (S17-3), reads the final value of the Meter Data (S17-4) and displays the
final Display Data (S17-5).

Scenario #18 - Fire Detected When The Gas Station Is Not Operating (C-49)

The Detector Array generates a Threshold Exceeded event (S18-1) for the Gas Station STD. The
Gas Station enables (S18-2) the Alarm (which sends an ALARM ON COMMAND to the Alarm
(S18-3)), disables (S18-4) the Detector Array, and triggers (S18-5) an operation which sends an
Alarm message (S18-6) to the Remote Central Facility.

Scenario #19 - Fire Detected When The Gas Station Is Operating (C-50)

The Detector Array generates a Threshold Exceeded event (S19-1) for the Gas Station STD. The
Gas Station enables (S19-2) the Alarm (which sends an ALARM ON COMMAND to the Alarm
(S19-3)), disables (S19-4) the Detector Array, triggers (S19-5) an operation which sends Close
events (S19-6) to each of the pumps in the gas station, and triggers (S19-7) an operation which
sends an Alarm message (S19-8) to the Remote Central Facility.

Scenario #20 - Link State Interrupt Brings The Communications Link Up (C-51)

A Link State Interrupt (S20-1) arrives at the Analyze Link State function which, under the proper
conditions, generates a Link Up event (S20-2) for the Gas Station STD. The Gas Station STD
triggers (S20-3) an operation which sends an Open event (S20-4) to each pump in the gas station.

Scenario #21 - Link State Interrupt Brings The Communications Link Down (C-52)

A Link State Interrupt (S21-1) arrives at the Analyze Link State function which, under the proper
conditions, generates a Link Down event (S21-2) for the Gas Station STD. The Gas Station STD
triggers (S21-3) an operation which sends a Close event (S21-4) to each pump in the gas station.

Appendix C. COBRA Specification Event Scenario Descriptions

C-31-4

Card
Reader

Control
Pump

Authorize
Transaction

Card
Information

S1-6 LED(number)

S1-7 Eject

S1-1 Inserted
Interrupt

S1-3 Cash Card
Inserted

S1-8 Cash Not
Okay

S1-4 TRIGGER

S1-2

S1-5

C-32 Scenario #1 - Exhausted Cash Card Inserted By The
Customer

Card
Reader

Control
Pump

Authorize
Transaction

Card
Information

S2-1 Inserted
Interrupt

S2-3 Cash Card
Inserted

S2-7 Cash Okay

S2-4 TRIGGER

S2-2

S2-5

C-33 Scenario #2 - Valid Cash Card Inserted By The
Customer

Transaction
S2-6

Gas
Dispenser

S2-8 ENABLE*

This Object
Enabled Only if the
Switch is On

Card
Reader

Control
Pump

Authorize
Transaction

Card
Information

S3-1 Inserted
Interrupt

S3-3 Credit Card
Inserted

S3-4 TRIGGER

S3-2

S3-5

C-34 Scenario #3 - Corporate Credit Card Inserted By The
Customer

S3-6 message(Authorization)

Switch

Control
Pump

Gas
Dispenser

S4-1 Switch On
Interrupt

S4-2 Switch On

S4-3 Enable

C-35 Scenario #4 - Gas Dispenser Switch Set To On By Customer After The
Transaction Has Been Authorized

S4-4 Dispenser On
Command

S4-5 Meter Data

S4-6 Display Data

Switch

Control
Pump

S5-1 Switch On
Interrupt

S5-2 Switch On

C-36 Scenario #5 - Gas Dispenser Switch Set To On By Customer Before The Transaction
Has Been Authorized

Switch

Control
Pump

Gas
Dispenser

S6-1 Switch Off
Interrupt

S6-2 Switch Off

S6-3 Disable

C-37 Scenario #6 - Gas Dispenser Switch Set To Off By Customer

S6-4 Dispenser Off Command

S6-5 Meter Data

S6-6 Display Data

Gas
Dispenser

Control
Pump

Complete
Transaction

S7-1 Stopped

S7-2 TRIGGER

C-38 Scenario #7 - Gas Dispenser Stops For Any Reason (i.e., Disabled or Reached Cash
Limit) When A Cash Transaction Was Being Processed

S7-5 write(data)

S7-6 Eject

Card
Information

Transaction

S7-3

S7-4

Gas
Dispenser

Control
Pump

Complete
Transaction

S8-1 Stopped

S8-2 TRIGGER

C-39 Scenario #8 - Gas Dispenser Stops When A Credit Transaction Was Being
Processed

S8-5 message(Credit Transaction)

S8-6 Eject

Card
Information

Transaction

S8-3

S8-4

Add to
Rcv List

Decode
Message
Header

Control
Pump

C-40 Scenario #9 - Incoming Authorization Reply With Authorized - Gas Dispenser
Switch Is Not On

RCV LIST

Transaction

Establish
Transaction

S9-1 Incoming
Message(
Authorization R

eply)

S9-2

S9-3

S9-4

S9-5 Authorized

S9-6 TRIGGER
S9-7

Add to
Rcv List

Decode
Message
Header

Control
Pump

C-42 Scenario #11 - Incoming Authorization Reply With Not Authorized

RCV LIST

Reject
Transaction

S11-1 Incoming
Message(
Authorization Reply

)

S11-2

S11-3

S11-4

S11-5 Not Authorized

S11-6 TRIGGER

Add to
Rcv List

Decode
Message
Header

Gas
Station

C-43 Scenario #12 - Incoming Restart When Station Was Previously Shutdown By
Remote Central Facility

RCV LIST

Send
Opens

S12-2

S12-3

S12-4

S12-5 Restart

S12-6 TRIGGER
S12-7 Open

Control
Pump

Add to
Rcv List

Decode
Message
Header

Gas
Station

C-44 Scenario #13 - Incoming Restart When Station Was Previously Shutdown
By Emergency

RCV LIST

Send
Opens

S13-1 Incoming
Message(R

estart)

S13-2

S13-3

S13-4

S13-5 Restart

S13-9 ENABLE

S13-11 Open

Control
Pump

Alarm

S13-7 DISABLE

S13-8 Alarm OFF
COM

MAND

Detector
Array

S13-10 TRIGGER

Add to
Rcv List

Decode
Message
Header

Gas
Station

C-45 Scenario #14 - Incoming Shutdown From Remote Central Facility

RCV LIST

Send
Closes

S14-1 Incoming

Message(Shutdow
n)

S14-2

S14-3

S14-4

S14-5 Shutdown

S14-6 TRIGGER
S14-7 Close

Control
Pump

Control
Pump

S15-1 Close

C-46 Scenario #15 - Pump Receives A Close When The Pump Is Idle

Send
Close

Send
Closes

Control
Pump

C-47 Scenario #16 - Pump Receives Close While Permission to Dispense Gas Is
Pending

Reject
Transaction

S16-1 Close

S16-2 TRIGGER
S16-3 LED(number)

S16-4 Eject

Detector
Array

Control
Pump

Gas
Dispenser

S17-1 Close

S17-2 Disable

C-48 Scenario #17 - Pump Receives Close While Dispensing Gas

S17-3 Dispenser Off Command

S17-4 Meter Data

S17-5 Display Data

Detector
Array

Gas
Station

Send
Alarm

Message

S18-1 Threshold
Exceeded

C-49 Scenario #18 - Fire Detected When The Gas Station Is Not Operating

S18-6 message(Alarm)

Alarm
S18-2 ENABLE S18-3 ALARM ON

COMMAND

S18-5 TRIGGER

S18-4 DISABLE

Detector
Array

Gas
Station

Send
Alarm

Message

S19-1 Threshold
Exceeded

C-50 Scenario #19 - Fire Detected When The Gas Station Is Operating

S19-8 message(Alarm)

Alarm
S19-2 ENABLE S19-3 ALARM ON

COMMAND

S19-5 TRIGGER

S19-4 DISABLE

Send
Closes

S19-6 Close

S19-7 TRIGGER

Analyze
Link
StateS20-1 LINK STATE

INTERUPT

Gas
Station

S20-2 Link Up

Send
Opens

S20-3 TRIGGER S20-4 Open

C-51 Scenario #20 Link State Interrupt Brings The
Communications Link Up

Analyze
Link
StateS21-1 LINK STATE

INTERUPT

Gas
Station

S21-2 Link Down

Send
Closes

S21-3 TRIGGER S21-4 Close

C-52 Scenario #21 Link State Interrupt Brings The
Communications Link Down

Dispensing

C-53 CONTROL PUMP STATE TRANSITION DIAGRAM

S12-7 or S13-11 Open

S15-1 Close

S11-5 Not
 Authorized

S3-3 Credit Card
 Inserted

S1-3 or S2-3
Cash Card Inserted

S9-5 Authorized
 [Switch is not On]

S10-5 Authorized
 [Switch is On]

S4-2 Switch On

 S7-1 or S8-1 Stopped

S6-2 Switch OffS17-1 Close

S16-1 Close

S16-1 Close

S7-1 or S8-1 Stopped

Closed Opened

Waiting
Authorization

Authorized

Waiting On
Done

Waiting On
Stopped

S1-8 Cash Not
Okay

S2-7 Cash Okay
 [Switch is not On]

S2-7 Cash Okay
 [Switch is On]

S3-4 Trigger "Authorize
 Transaction"S1-4 Trigger "Authorize

Transaction"

S11-6 Trigger
 "Reject
 Transaction"

S16-2 Trigger "Reject Transaction"

S9-6 Trigger "Establish
 Transaction"

S7-2 or S8-2 Trigger "Complete
 Transaction"

S10-6 Trigger "Establish Transaction"
S10-8 Enable "Gas Dispenser"

S2-8 Enable "Gas Dispenser"

S4-3 Enable "Gass
 Dispenser"

S7-2 or S8-2 Trigger "Complete
 Transaction"

S17-2 Disable "Gas Dispenser" S6-3 Disable "Gas Dispenser"

S16-2 Trigger "Reject Transaction"

Operating

Disabled

No Link

S14-5 Shutdown

S12-5 Restart

S19-1Threshold
Exceeded

S13-5 Restart

S18-1 Threshold Exceeded

S21-2 Link Down

S20-2 Link Up

C-54 Gas Station STATE TRANSITION DIAGRAM

S18-2 Enable "Alarm"
S18-4 Disable "Detector Array
S18-5 Trigger "Send Alarm

Message"

S13-7 Disable "Alarm"
S13-9 Enable "Detector Array"
S13-10 Trigger "Send Opens"

S14-6 Trigger "Send Closes"

S12-6 Trigger "Send Opens"

S21-3 Trigger "Send Closes"

S20-3 Trigger "Send Opens"

S19-2 Enable "Alarm"
S19-4 Disable "Detector Array
S19-5 Trigger "Send Closes"
S19-7 Trigger "Send Alarm

Message"

S18-1 Threshold Exceeded

S18-2 Enable "Alarm"
S18-4 Disable "Detector Array
S18-5 Trigger "Send Alarm

Message"

 APPENDIX D. AUTOMATED GAS STATION
 MANAGER OMT SPECIFICATION

AUTOMATED GAS STATION MANAGER

OBJECT MODEL

D-1

Customer

Alarm

status

Heat
Detector

Smoke
Detector

LED Switch

status

Card Reader
amount
 dispensed
price per
 gallon

Gas
Dispenser

Remote
Central
Facility

S
t
a
I
D

Pump

status
ID

Station

2 Part of
Part of

P
a
r
t
o
f

8
+

 8+

AGSM OBJECT MODEL

Cash Card

cash value

Credit
Transaction

Cash
Transaction

H
a
s

Authorizes

Uses

Corporate
Credit Card

account
 number

Card

identification
number

8+

Gas Station

status
Station Id

P
I
D

Detector

threshold
status
processed
 sensor data

 Transaction

cost of gas
limit

Serves

Serves

R
equests

A
uthroizes

Communications
Link

status
RCV LIST
TX LIST
CREDIT

TRANSACTION
LIST

Uses

D-2

Object Dictionary For Automated Gas Station Manager (AGSM)

Alarm

A audible device that is sounded at a Gas Station whenever a fire is detected at the
station.

Attributes

1. status: BOOLEAN

Operations

1. sound -- Turns on alarm

2. reset -- Turns off alarm

Card

A token, possessed by a Customer, that can be inserted into a Card Reader. Each Card
has an identification number to allow the Card Reader to distinguish various types of Cards.

Attributes

1. identification number: NUMERIC

Operations

1. set_id_number(id: NUMERIC)

2. get_id_number:NUMERIC

3. set_account_number(x:NUMERIC) -- default

4. get_account_number:NUMERIC -- default

5. set_cash_value(x:INTEGER) -- default

6. get_cash_value:INTEGER -- default

Card Reader

An input/output device attached to each Pump that can detect the insertion of a
Corporate Credit Card or a Cash Card, that can distinguish between the two types of cards (as
well as identify unrecognized cards), that can read appropriate information from each type of
card, that can debit and write a new balance to a Cash Card, and that can eject a card.

Operations

1. write(id_num: NUMERIC, value: INTEGER)

2. Eject

3. read

Appendix D. OMT Specification Object Dictionary

 D-3

Cash Card inherits Card

A card encoded with a cash value which is debited by the dollar amount of gas pumped
after each transaction. The cash balance is printed on the card after each transaction. The card
contains an identification number which distinguishes it from a Corporate Credit Card and from
other types of cards that are not known to the system.

Attributes

1. cash value: INTEGER

Operations

1. set_cash_value(amount: INTEGER)

2. get_cash_value: INTEGER

Cash Transaction inherits Transaction

A transaction authorized by the cash value contained on a Cash Card. Gas may be
dispensed up to the amount of the cash value.

Operations

1. complete(card:CASH CARD) -- completes processing a Cash Transaction

2. authorize(card:CASH CARD) -- determines whether a Cash Card is valid

3. reject -- lights appropriate LED and Ejects Card

Corporate Credit Card inherits Card

A card encoded with a corporate account number which must be verified before
dispensing gas. The card also contains an identification number which distinguishes it from a
Cash Card and from other types of cards that are not known to the system.

Attributes

1. account number: NUMERIC

Operations

1. get_account_number: NUMERIC

2. set_account_number(account: NUMERIC)

Credit Transaction inherits Transaction

A transaction requested with a Corporate Credit Card and authorized by the Remote
Central Facility. Once authorized, gas may be dispensed without limit.

Operations

1. complete(card:CREDIT CARD) -- completes processing a credit transaction

2. authorize(card:CREDIT CARD) -- determines whether a Credit Card is valid

Appendix D. OMT Specification Object Dictionary

 D-4

3. reject -- lights appropriate LED and Ejects Card

Communications Link

A link between the Gas Station and the Remote Central Facility. The link can go up and
down. When the link is up, Validation Requests and Validation Replies may be exchanged
between Pumps and the Remote Central Facility and Alarm Messages and Credit Transactions
may be sent from the Gas Station to the Remote Central Facility. The Gas Station can also
receive Shutdown Commands from the Remote Central Facility. When the link goes down, the
Gas Station shuts down, except that any pending Credit Transactions are saved on secondary
storage so that the processing can be completed when the link comes back up.

Attributes

1. status: INTEGER

2. RCV_LIST: LINKED_LIST

3. TX_LIST: LINKED_LIST

4. CREDIT_TRANSACTION_LIST: FILE

Operations

1. analyze_link(event: LINK_EVENT) -- encapsulates Link STD

2. add_to_rcv_list(message: ARRAY[BYTES]) -- enqueues a received message

3. add_to_tx_list(message: RECORD) -- enqueues a message for transmission

4. decode_message_header -- generates incoming events for other STDs

5. transmit_message -- sends a message if possible

6. handle_message_sent_interrupt

7. handle_message_received_interrupt

8. handle_link_state_interrupt

9. save_credit_transactions -- moves credit transactions from TX_LIST to
 -- CREDIT_TRANSACTION_LIST. Other messages are
 -- discarded

10. restore_credit_transactions -- moves credit transactions from
 -- CREDIT_TRANSACTION_LIST to head of TX_LIST

Customer

A human being who initiates a gas purchase transaction by inserting a Cash Card or a
Corporate Credit Card and who turns the Pump on and off and who dispenses the gas.

Detector

Appendix D. OMT Specification Object Dictionary

 D-5

A device that monitors some physical condition and signals when the monitored
condition surpasses a specified threshold.

Attributes

1. threshold: REAL

2. status: INTEGER

3. processed_sensor_data: REAL

Operations

1. read {abstract} -- must read the sensor, convert the data to processed form and store it in
 -- processed_sensor_data

2. monitor_sensor:REAL --computes a delta between threshold and processed sensor data

3. send_threshold_exceeded -- generates a Threshold Exceeded event for the Gas Station

4. process_change(delta:REAL) --encapsulates the Detector STD

Gas Dispenser

The mechanism within each Pump that dispenses gasoline, measures the amount
dispensed, and terminates dispensing when conditions require.

Attributes

1. amount dispensed: REAL

2. price per gallon: INTEGER is CONSTANT

Operations

1. start_gas -- starts the gas dispenser to dispense up to the
 -- maximum, but a zero maximum means no limit

2. stop_gas -- stops the gas dispenser

3. clear_amount_dispensed

4. update_amount_dispensed

5. update_display

6. get_amount_dispensed: REAL

7. get_price: INTEGER

8. ?limit_reached(t:TRANSACTION): BOOLEAN -- T if the limit is reached, F otherwise

Gas Station

A physical location comprising Pumps, an Alarm, a Dedicated Communications Link,
and some local, secondary storage. The Gas Station can monitor and control its Pumps, control
its Alarm, and monitor its Dedicated Communications Link.

Appendix D. OMT Specification Object Dictionary

 D-6

Attributes

1. status: INTEGER

2. Pump_Ids: LINKED_LIST

3. Station_Id: INTEGER

Operations

1. process_event(event: GS_EVENT)

2. open_pumps -- send an Open Event to each Pump STD

3. close_pumps -- send a Close Event to each Pump STD

4. send_alarm_message -- forward alarm message to the Remote Central Facility

Heat Detector inherits Detector

A device attached to each Pump. The device monitors heat levels and signals the Gas
Station when heat surpasses a specified threshold.

Operations

1. read -- inputs sensor data, converts to REAL, and stores as processed sensor data

LED

A light-emitting diode. Two are attached to each Pump: one is placed under a label
"Cannot Process Card" and the other is placed under a label "Card Value Used". The first is
lighted when a Customer inserts a card that is not a valid Corporate Credit Card or a Cash
Card. The second is lighted when the value on an inserted Cash Card reaches zero. Any LED
that is lit will be turned off when another card is inserted into the Pump or after a time-out.

Operations

1. light -- turns itself on and, after a timeout, turns itself off.

Pump

A gasoline dispensing device located at a Gas Station. Each Pump can dispense one
grade of gasoline. Each Pump comprises a Heat Detector, a Smoke Detector, two LEDs, a Card
Reader, a "Gas Purchased" Display, a "Gas Cost" Display, an on/off switch, and a nozzle.

Attributes

1. status: INTEGER

2. ID: INTEGER -- identity of the Pump

3. Station: INTEGER -- identity of the station where the pump is located

Operations

Appendix D. OMT Specification Object Dictionary

 D-7

1. process_event(event: PUMP_EVENT) -- encapsulates the Pump STD

Remote Central Facility

A control point for a Gas Station. The Remote Central Facility communicates with a
Gas Station across a Communications Link. The Remote Central Facility accepts Credit
Transactions from Pumps, Validation Requests, and Alarm Messages. The Remote Central
Facility issues Shutdown Commands, and Validation Replies.

Smoke Detector inherits Detector

A device attached to each Pump. The device monitors concentration of smoke particles
and signals the Gas Station when the concentration of smoke particles surpasses a specified
threshold.

Operations

1. read -- inputs sensor data, converts to REAL, and stores as processed sensor data

Switch

The on/off actuator at each Pump. The Customer must turn the Switch on before
dispensing gasoline and must turn the Switch off when finished dispensing gasoline.

Attributes

1. status: INTEGER

Operations

1. handle_switch_interrupt -- Switch interrupt processing

2. process_event(event: SWITCH_EVENT) -- encapsulates Switch STD

3. send_switch_on -- generate switch on event for Pump

4. send_switch_off -- generate switch off event for Pump

Transaction

A Transaction is the filling of a Customer’s request for gasoline. Each Transaction
results in a Customer being charged for the cost of gas purchased.

Attributes

1. cost of gas: INTEGER

2. limit: INTEGER

Operations

1. get_limit: INTEGER -- returns the value of the limit attribute

2. set_cost_of_gas(amount: INTEGER) -- changes the value of the cost of gas attribute

3. complete(card:CARD) {abstract} -- complete the transaction

Appendix D. OMT Specification Object Dictionary

 D-8

4. authorize(card:CARD) {abstract} -- decide whether the transaction is authorized

5. reject {abstract} -- terminate an unauthorized transaction

Appendix D. OMT Specification Object Dictionary

 D-9

AUTOMATED GAS STATION MANAGER

DYNAMIC MODEL

D-10

OpenedClosed

Waiting
Authorization

Authorized

Dispensing

D-11 PUMP STATE TRANSITION DIAGRAM

OPEN from Gas Station

CLOSE from Gas Station

NOT AUTHORIZED/
reject transaction

CREDIT CARD INSERTED /
Create Credit Transaction

CASH CARD
 INSERTED /
Create Cash
Transaction

AUTHORIZED [Switch is not On]

AUTHORIZED [Switch is On]

do: Dispense Gas

ON from Switch

Stopped from Gas
Dispenser /

Light "Card Value Used" LED,
Complete Transaction

OFF from Switch
CLOSE from Gas Station

CLOSE from Gas Station /
Eject Card

CLOSE from
Gas Station /
Eject Card

Stopped from Gas Dispenser

Wait On Stopped

exit / complete
 transaction

 entry / Send Stop
Dispensing to
Gas Dispenser

Wait On Done

exit / complete
 transaction

 entry / Send Stop
Dispensing to
Gas Dispenser

Stopped from Gas
Dispenser

entry: authorize
transaction

Switch Off

Switch On

entry / Set Switch.status
to Off,
Send Pump
SWITCH OFF

SWITCH ACTIVATED

SWITCH DEACTIVATED

D-12 SWITCH STATE TRANSITION DIAGRAM

entry / Set Switch.status
to On,
Send Pump
SWITCH ON

Operating

Disabled

No Link

SHUTDOWN from
Remote Central Facility

RESTART from Remote
Central Facility

EmergencyTHRESHOLD
EXCEEDED
from Detector

RESTART from Remote
Central Facility

THRESHOLD
EXCEEDED from Detector

LINK DOWN from
Communications Link

LINK UP from
Communications Link

entry / Send ALARM
MESSAGE to
Remote Central
Facility

exit / Reset Alarm

THRESHOLD
EXCEEDED from Detector

exit / Send CLOSE to
Pumps

entry / Send OPEN to
Pumps

D-13 GAS STATION STATE TRANSITION DIAGRAM

Below Threshold

Above Threshold

do: monitor sensor

do: monitor sensor

exit / Sound Alarm,
Send THRESHOLD
EXCEEDED to
Gas Station

THRESHOLD CROSSED
GOING UP

THRESHOLD CROSSED
COMING DOWN

D-14 DETECTOR STATE TRANSITION DIAGRAM

AUTOMATED GAS STATION MANAGER

FUNCTIONAL MODEL

D-16

Manage
Card

Reader
1.1

Authorize
Transaction

1.2

Perform
Transaction

1.3

Light
LED
1.4

identification number,
account number

identification number,
cash value

identifcation number,
new cash value

CARD INSERTED
INTERRUPT

EJECT, WRITE, &
READ COMMANDS

account number

cash value

Eject

LED number

TURN ON &
TURN OFF COMMANDS

LED number

new cash value

account number,
cash limit

Authorization
Request

Authorization
Reply

Credit Transaction

D-19 1 Process Customer DATA FLOW DIAGRAM

Eject

LED number

from Pump
STD

Authorize
Credit

Transaction
1.2.1

account number
account number,
cash limit

Authorization Request Authorization Reply

Authorize
Cash

Transaction
1.2.2

EJECT

cash value
account number,
cash limit

Close

D-21 1.2 Authorize Transaction DATA FLOW
DIAGRAM

Read
Card
Input
1.1.1

CARD INSERTED
INTERRUPT

identification number,
account number,
cash value

READ COMMAND

account number

cash value

Write
Card

Output
1.1.2

Card Information

identification number

identification number

new cash value
identification number,
new cash value

WRITE COMMAND
Eject
Card
1.1.3EJECT COMMAND

D-20 1.1 Manage Card Reader DATA FLOW DIAGRAM

LED number

Dispense
Gas
1.3.1

Monitor
Switch
1.3.2

Monitor
Meter
1.3.3

Update
Display
1.3.4

Complete
Transaction

1.3.5

Stop from Pump STD

new cash value

Credit Transaction

START
COMMAND

display datameter valueREAD
COMMAND

ACTIVATE &
DEACTIVATE
INTERRUPTS

Switch ON to Pump STD amount dispensed price per gallon

cash limit

LED number

Eject

D-22 1.3 Perform Transaction DATA FLOW DIAGRAM

STOP
COMMAND

Switch OFF
to Pump STD

Stopped to Pump STD

Read
Sensor
Data
2.1

Monitor
Sensor

2.2

Reset
Alarm

2.3

Threshold

sensor data processed sensor data
delta from Threshold
to Detector STD

TURN ON
COMMAND

TURN OFF
COMMAND

D-23 2 MANAGE ALARM DATA FLOW DIAGRAM

Sound
Alarm

2.4 from Dectotor STD

Send
Alarm

Message
3.1

Send
Close

3.2

Send
Reset

3.3

Send
Open
3.4

Threshold Exceeded

Alarm

Close

Open

Link Up

Link Down

Shutdown

Restart

Reset
Alarm

D-24 3 MANAGE GAS STATION DATA FLOW DIAGRAM

Add
to

Rcv List
4.1

Decode
Message
Header

4.2

Authorized

Shutdown

Restart

MESSAGE RECEIVED
INTERRUPT

Add
to

Tx List
4.4

Send
to

Link
4.5

Analyze
Link
State
4.3

RCV LIST

TX LIST

LINK UP INTERRUPT

LINK DOWN INTERRUPT

Link Down

Link Up

credit transaction

authorization
request

alarm message

new link status

message

MESSAGE SENT
INTERRUPT

D-25 4 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

Wakeup

message

from Link STD

Not Authorized

Transmit
Message

4.5.1

Save
Credit

Transactions
4.5.2

Restore
Credit

Transactions
4.5.3

TX LIST CREDIT TRANSACTION
LIST

LINK STATUS

from Link STD

Wakeup

MESSAGE SENT
INTERRUPT

credit transaction

alarm message

authorization
request

D-26 4.5 Send to Link DATA FLOW DIAGRAM

new link status

from Link STD

from Link STD

AGSM Function Descriptions

1.1.1 Read Card Input

LOOP FOREVER
WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
 THEN READ cash value,
 store cash value in Card Information,

CALL Authorize Cash Transaction(cash value)
ELSEIF identification number is Corporate Credit Card

THEN READ account number,
store account number in Card Information,
CALL Authorize Credit Transaction(account number)

ELSE CALL Light LED(Cannot Process Card)
CALL Eject Card

ENDIF
END LOOP

1.1.2 Write Card Output(new cash value)

WRITE(identification number from Card Information, new cash value)
to CARD

1.1.3 Eject Card

EJECT

1.2.1 Authorize Credit Transaction(account number)

Authorization Request := BUILD (Remote Central Facility Address, Station ID, Pump ID,
account number)

CALL Add to Tx List(Authorization Request)
WAIT for Authorization Reply OR Close
IF Authorization Reply with Authorization

THEN CALL Dispense Gas(account number,(cash limit := none))
ELSEIF Authorization Reply without Authorization

THEN CALL Light LED(Cannot Process Card)
CALL Eject Card

ELSE CALL Eject Card
ENDIF

Appendix D. OMT Specification Function Descriptions

D-27

1.2.2 Authorize Cash Transaction(cash value)

IF cash value is not positive
THEN CALL Light LED(Cash Value Used)

CALL Eject Card
ELSE CALL Dispense Gas((account number := not valid), (cash limit := cash value))
ENDIF

1.3.1 Dispense Gas(cash limit)

Send START COMMAND to Gas Dispenser
LOOP FOREVER

Check for Stop from Pump STD
If Stop received THEN BREAK LOOP
CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon

 >= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
RETURN

1.3.2 Monitor Switch

LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT
IF ACTIVATE INTERRUPT

THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD

ENDIF
END FOREVER LOOP

1.3.3 Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

1.3.4 Update Display

display gallons := amount dispensed/100
display cost := display gallons * price per gallon
OUTPUT display gallons to GALLONS DISPLAY
OUTPUT display cost to COST DISPLAY

Appendix D. OMT Specification Function Descriptions

D-28

1.3.5 Complete Transaction(account number, cash limit)

IF account number is valid
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump

ID, account number,
amount dispensed/100*price per gallon)

CALL Add to TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100*price per gallon)

CALL Write Card Output(new cash value)
ENDIF
CALL Eject Card

1.4 Light LED(LED number)

IF LED number is Cash Value Used
THEN TURN ON Cash Value Used LED
ELSE TURN ON Cannot Process Card LED

ENDIF
WAIT 15 Seconds
TURN OFF BOTH LEDs

2.1 Read Sensor Data

READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
CALL Monitor Sensor(processed sensor data)

2.2 Monitor Sensor(processed sensor data)

compute delta from Threshold using processed sensor data and Threshold
pass delta from Threshold to Detector STD

2.3 Reset Alarm

Send TURN OFF COMMAND to Alarm

2.4 Sound Alarm

Send TURN ON COMMAND to Alarm

3.1 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station ID)
CALL Add to Tx List(Alarm Message)

3.2 Send Close

LOOP FOR EVERY Pump

Appendix D. OMT Specification Function Descriptions

D-29

Send Close to Pump
END LOOP

3.3 Send Reset

CALL Reset Alarm

3.4 Send Open

LOOP FOR EVERY PUMP
Send Open to Pump

END LOOP

4.1 Add to Rcv List

Accept message from Link
Add message to RCV LIST
CALL Decode Message Header

4.2 Decode Message Header

IF message is a RESTART COMMAND
THEN generate a Restart event for the Gas Station STD

ELSEIF message is a SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD

ELSEIF message is an authorization reply
THEN IF message contains authorization

THEN generate an Authorized event for the appropriate
Pump STD

ELSE generate an Unauthorized event for the appropriate
Pump STD

ENDIF
ENDIF
Remove message from the RCV LIST

4.3 Analyze Link State

This function operates following the rules in the Link STD
set new link status as indicated in Link STD
generate appropriate events as indicated in Link STD

4.4 Add to Tx List(message)

Add message to TX LIST
CALL Transmit Message

4.5.1 Transmit Message

CALL ENTRY Transmit Message:
IF LINK STATUS is UP and no message is being transmitted

THEN start transmission of next message from TX LIST

Appendix D. OMT Specification Function Descriptions

D-30

ELSEIF LINK STATUS is DOWN
THEN CALL Save Credit Transactions

ENDIF
RETURN

MESSAGE SENT INTERRUPT ENTRY:
IF TX LIST is empty

THEN RETURN
ELSE CALL Transmit Message

ENDIF
RETURN

4.5.2 Save Credit Transactions

FOR EVERY message on TX LIST
IF message is a Credit Transaction

THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST

END FOR EVERY message on TX LIST LOOP

4.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk

END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

Appendix D. OMT Specification Function Descriptions

D-31

AGMS DATA DICTIONARY FOR FUNCTIONAL MODEL

A. account number: NUMERIC

-- Number issued on Corporate Credit Cards to identify the account

B. amount dispensed: REAL

--Contains the amount of gasoline dispensed at a Pump in units of hundreths of a gallon

C. Card Information: RECORD

--Holds the data read from a Card inserted into the Card Reader

1. identification number: NUMERIC
2. account number: NUMERIC
3. cash value: INTEGER

D. cash limit: INTEGER

--Contains the limit in cents that a Customer can use to buy gas
--If the value is negative, then the Customer has no limit

E. cash value: INTEGER

--Indicates the value of a Cash Card in cents.

F. CREDIT TRANSACTION LIST: FILE

--A File containing saved Credit Transaction Messages

G. delta from Threshold: REAL

--Contains a measure of the distance of a given sensor reading from the
--Threshold. (If positve, then the distance is above the Threshold. If negative,
-- then the distance is below the Threshold.)

H. display data: RECORD

--Contains two values to be displayed

1. display gallons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

Appendix D. OMT Specification Data Dictionary

D-32

I. identification number: NUMERIC

--Distinguishes a Cash Card from a Corporate Credit Card

J. LED number: INTEGER

--Identifies the LED on a Pump that is to be turned on.
-- Values: 0 is Cash Value Used
-- 1 is Cannot Process Card

K. LINK STATUS: INTEGER

--Indicates the current state of the Communications Link
-- Values: 0x00 is Link Up
-- 0x01 is Link Down

L. messages: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE

0 is SHUTDOWN COMMAND
1 is RESTART COMMAND
2 is credit transaction
3 is alarm message
4 is authorization request
5 is authorization reply

4. Optional additional parameters determined by Type.
For credit transaction:

Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)

For authorization request
Pump ID: INTEGER
account number: NUMERIC

For authorization reply
Pump ID: INTEGER
response: BOOLEAN

0 is Not Authorized
1 is Authorized

Appendix D. OMT Specification Data Dictionary

D-33

M. meter value: REAL

-- Data read from the Gas Dispenser’s meter

N. new cash value: INTEGER

-- The value (in cents) to place back onto the Cash Card after the transaction is complete

O. new link status: INTEGER

-- The new status of the communications link. Values can be 0, link up, or 1, link down

P. price per gallon: INTEGER

-- The cost of gasoline, per gallon, at the Pump. The units are cents. This value is a
-- configuration setting for each Pump.

Q. processed sensor data: REAL

-- The current value read from a sensor, but converted to a real number.
-- For a smoke detector, this measures smoke particle concentration in parts per million.
-- For a heat detector, this measrues temperature in degrees Celsius.

R. RCV LIST: LINKED_LIST

-- This is the queue of messages received on the Communications Link, but not yet
-- processed.

S. sensor data: DEVICE DEPENDENT

-- The raw input from a sensor device. The form is dependent on the specific sensor.

T. Threshold: REAL

-- The value that a processed sensor data input is compared against.
-- This is set as a configuration option on each sensor.

U. TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

Appendix D. OMT Specification Data Dictionary

D-34

AUTOMATED GAS STATION MANAGER

OBJECT COMMUNICATION DIAGRAMS,

OBJECT FUNCTION DIAGRAMS,

AND

OBJECT FUNCTION DESCRIPTIONS

D-35

AGMS

CORPORATE
CREDIT
CARD

COMMUNICA-
TIONS
LINK

LEDS

SWITCH

REMOTE
CENTRAL
FACILITY

ALARM
GAS

DISPENSER

CARD
READER

CASH
CARD

DETECTORS

identification
 number,
account number

identification
 number,
cash value

identification
 number,
new cash
 value

LINK UP INTERRUPT,
LINK DOWN INTERRUPT,
MESSAGE SENT INTERRUPT,
MESSAGE RECEIVED
INTERRUPT

LED ON & LED OFF
COMMANDS

ACTIVATED &
DEACTIVATED
INTERRUPTS

credit transaction,
alarm message,
authorization requests

SHUTDOWN &
RESTART COMMANDS,
authorization replies

ALARM ON & ALARM OFF
COMMANDS

sensor data

CARD
INSERTED
INTERRUPT

EJECT,
 WRITE, &
READ
COMMANDS

meter
value

START,
STOP &
READ COMMANDS,
display data

D-36 AGMS CONTEXT DIAGRAM

0

Pump
Subsystem

1 *

COMMUNICATIONS
LINK

Cash Out
LED

GAS
PUMP

SWITCH

ALARM

GAS
DISPENSER

SMOKE
DETECTORS

LINK INTERRUPTS,
SHUTDOWN &
RESTART
COMMANDS,
authorization replies

LED ON &
LED OFF
COMMANDS

ACTIVATED &
DEACTIVATED
INTERRUPTS

credit transactions,
alarm messages,
authorization requests

ALARM ON &
ALARM OFF
COMMANDS

sensor data

meter
value

START &
STOP
COMMANDS

AGMS SUBSYSTEM DECOMPOSITON

CARD
READER

EJECT &
WRITE
COMMANDS,
identification
number,
new cash value

identification
 number,
cash value,
account number

Gas Station
Subsystem

2

Communicat
ions
Link

Subsystem
3

Opens & Closes

Alarm Message

Shutdowns &
Restarts

Authorization Request Message
 &
Credit Transaction Message

Authorized

Link
Down
&
Link Up

Not Authorized

No Credit
LED

LED ON &
LED OFF
COMMANDS

DISPENSER
DISPLAY

accumulated gallons,
accumulated cost

* One Instance of Pump
Subsystem per pump

HEAT
DETECTORS

sensor data

Pump
Aggregate

Pump
Aggregate

Gas Station
Aggregate

Communications
Link

D-37 TOP-LEVEL OBJECT COMMUNICATIONS DIAGRAM

identification number,
cash value

identification number,
account number
CARD INSERTED
INTERRUPT

ACTIVATED &
DEACTIVATED
INTERRUPTS

meter value
identification
number,
new cash
value

EJECT,
WRITE, &
READ
COMMANDS

START,
STOP, &
READ COMMANDS,
display data

LED ON
&
LED OFF
COMMANDS

sensor data

ALARM ON
&
ALARM OFF
COMMANDS

LINK UP INTERRUPT,
LINK DOWN INTERRUPT,
MESSAGE SENT INTERRUPT,
MESSAGE RECEIVED INTERRUPT

OPEN

 CLOSE

 add_to_tx_list(Alarm Message)

LINK UP

LINK DOWN

RESTART

SHUTDOWN

AUTHORIZED

 NOT AUTHORIZED

add_to_tx_list(Authorization Request)

add_to_tx_list(Credit Transaction)

D-38 GAS STATION AGGREGATE OBJECT COMMUNICATIONS DIAGRAM

Smoke
Detector

Heat
Detector

Gas
Station

Alarm

reset

sound

ALARM ON
&
ALARM OFF
COMMANDS

sensor data

sensor data

 THRESHOLD EXCEEDED

THRESHOLD EXCEEDED

add_to_tx_list(AlarmMessage)

OPEN

CLOSE
LINK UP

LINK DOWN

SHUTDOWN

RESTART

Pump
Card

Reader

LED

Gas
Dispenser

Cash
Card

Credit Card
Credit

Transaction

Cash
Transaction

Switch

D-39 PUMP AGGREGATE OBJECT COMMUNICATION DIAGRAM

ACTIVATED &
DEACTIVATED
INTERRUPTS

identification number,
cash value

identification number,
account number

CARD INSERTED
INTERRUPT

EJECT,
WRITE &
READ
COMMANDS

identification number,
new cash value

meter
data

START,
STOP, &
READ
COMMANDS,
display data

LED ON
&
LED OFF
COMMANDS OPEN

CLOSE

AUTHORIZED

NOT AUTHORIZED

light(LED number)

 set_cash_value(amount)

 set_id(id)

set_account_number(account)

set_id(id)

NOT AUTHORIZED

write(id, value)

Eject
light(LED number)

get_cash_value

get_id

 light(LED
number)

Eject

get_account_number

add_to_tx_list(Authorization
Request)

add_to_tx_list(CreditTransacton)

reject

start_gas(transaction)

stop_gas

 authorize

complete

authorize

complete

get_limit

set_cost_of_gas(amount)

 ON
OFF

set_cost_of_gas(amount)

AUTHORIZED
get_limit

reject

CREDIT CARD INSERTED

CASH CARD INSERTED

STOPPED

set
account
number

set id

get
account
number

get id
account
number

account id

identification
number

set
cash
value

set id

get
cash

valuer
get id

cash
value

amount id

identification
number

D-42 CREDIT CARD OBJECT FUNCTION
 DIAGRAM

D-42 CASH CARD OBJECT FUNCTION
 DIAGRAM

account
number

identification
number

cash
value

identification
number

AGSM Object Function Descriptions

Card Reader Object

write(id, new cash value)
WRITE id and new cash value to Cash Card

end_write

Eject
SEND EJECT COMMAND to CARD READER

end_eject

read
READ identification number
IF identification number is for Cash Card
 THEN Cash Card.create,

Cash Card.set_id(identification number)
READ cash value,

 Cash Card.set_cash_value(cash value),
SEND CASH CARD INSERTED EVENT to Pump

ELSEIF identification number is for Corporate Credit Card
THEN Corporate Credit Card.create,

Corporate Credit Card.set_id(identification number)
READ account number,

 Corporate Credit Card.set_account_number(account number),
SEND CREDIT CARD INSERTED EVENT to Pump

ELSE LED.light(Cannot Process Card)
Eject

ENDIF
end_read

Card Object

set_id_number(id)
identification number := id

end_set_id_number

get_id_number()
RETURN identification number

end_get_id_number

set_account_number(x)
RETURN

end_set_account_number

Appendix D. OMT Specification Object Function Descriptions

D--47

get_account_number()
RETURN end_get_account_number

end_get_account_number

set_cash_value(x)
RETURN invalid account number

end_set_cash_value

get_cash_value()
RETURN zero

end_get_cash_value

Credit Card Object

set_account_number(account)
account number := account

end_set_account_number

get_account_number()
RETURN account number

end_get_account_number

Cash Card Object

set_cash_value(value)
cash value := value

end_set_cash_value

get_cash_value()
RETURN cash value

end_get_cash_value

Transaction Object

get_limt()
RETURN limit

end_get_limt

set_cost_of_gas(amount:INTEGER)
IF amount < 0

THEN cost of gas := 0
ELSE

cost of gas := amount
ENDIF

end_set_cost_of_gas

Credit Transaction Object

Appendix D. OMT Specification Object Function Descriptions

D--48

authorize(Credit Card)
limt : = 0
Authorization Request := BUILD (Remote Central Facility Address, Station ID, Pump

ID, Credit Card.get account number)
Communications Link.Add_to_Tx_List(Authorization Request)

end_authorize

reject()
LED.light(Cannot Process Card)
Card Reader.Eject

end_reject

complete(Credit Card)
Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump

ID, Credit Card.get_account_number,
cost_of_gas)

Communications Link.Add_to_TX_List (Credit Transaction)
Card Reader.Eject

end_complete

Cash Transaction Object

authorize(Cash Card)
IF Cash Card.get_cash_value > 0

THEN limit := Cash Card.get_cash_value
GENERATE AUTHORIZED for Pump

ELSE GENERATE NOT AUTHORIZED for Pump
end_authorize

reject()
LED.light(Cash Value Used)
Card Reader.Eject

end_reject

complete(Cash Card)
new cash value := Cash Card.get_cash_value - cost of gas
Card Reader.write(Cash Card.get_id, new cash value)
Card Reader.Eject

end_complete

Gas Dispenser Object

clear_amount_dispensed()
OUTPUT BLANK COMMAND to GALLONS DISPLAY
OUTPUT BLANK COMMAND to COST DISPLAY

Appendix D. OMT Specification Object Function Descriptions

D--49

amount_dispensed := zero
end_clear_amount_dispensed

update_amount_dispensed()
READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

end_supdate_amount_dispensed

update_display()
display gallons := amount dispensed/100
display cost := display gallons * price per gallon
OUTPUT display gallons to GALLONS DISPLAY
OUTPUT display cost to COST DISPLAY

end_update_display

get_amount_dispensed()
RETURN amount_dispensed

end_get_amount_dispensed

get_price()
RETURN price per gallon

end_get_price

?limit_reached(Transaction)
IF Transaction.get_limit = 0 THEN RETURN FALSE
IF amount dispensed/100 * price per gallon >= Transaction.get_limit

THEN RETURN TRUE
ELSE RETURN FALSE

end_?limit_reached

start_gas()
SEND START COMMAND to Gas Dispenser

end_start_gas

stop_gas()
SEND STOP COMMAND to Gas Dispenser
update_amount_dispensed
update_display
Transaction.set_cost_of_gas(amount_dispensed * 100 / price_per_gallon)
SEND STOPPED to Pump

end_stop_gas

LED Object

Appendix D. OMT Specification Object Function Descriptions

D--50

light(LED number)
IF LED number is Cash Value Used

THEN LED ON Cash Value Used LED
WAIT 10 Seconds
LED OFF Cash Value Used LED

ELSE LED ON Cannot Process Card LED
WAIT 10 Seconds
LED OFF Cannot Process Card LED

ENDIF
end_light

Detector Object

monitor_sensor():REAL
compute delta from Threshold using processed sensor data and Threshold
RETURN delta

end_monitor_sensor

send_threshold_exceeded()
GENERATE THRESHOLD EXCEEDED for Gas Station

end_send_threshold_exceeded

process_change(delta)
ENCAPSULATES DETECTOR STD

end_process_chage

Heat Detector Object

read()
READ sensor data from temperature detector
convert the sensor data to processed sensor data (i.e., a REAL value)

end_read()

Smoke Detector Object

read()
READ sensor data from particle counter
convert the sensor data to processed sensor data (i.e., a REAL value)

end_read()

Pump Object

process_event(EVENT)
ENCAPSULATES THE PUMP STATE TRANSITION DIAGRAM

end_process_event

Appendix D. OMT Specification Object Function Descriptions

D--51

Switch Object

handle_switch_interrupt()
EVENT := READ interrupt register
process_event(EVENT)

end_handle_switch_interrupt

process_event(event)
ENCAPSULATES SWITCH STATE TRANSITION DIAGRAM

end_process_event

send_switch_on
GENERATE ON for Pump

end_send_switch_on

send_switch_off
GENERATE OFF for Pump

end_send_switch_off

Alarm Object

sound()
OUTPUT ALARM ON COMMAND to Alarm

end_sound

reset()
OUTPUT ALARM OFF COMMAND to Alarm

end_reset

Gas Station Object

process_event(EVENT)
ENCAPSULATES the Gas Station STATE TRANSITION DIAGRAM

end_process_event

send_alarm_message()
Alarm Message := BUILD(Remote Central Facility Address, Station ID)
Communications Link.Add_to_Tx_List(Alarm Message)

end_send_alarm_message

send_close()
LOOP FOR EVERY Pump

GENERATE CLOSE for Pump
END LOOP

end_send_close

send_open()
LOOP FOR EVERY Pump

Appendix D. OMT Specification Object Function Descriptions

D--52

GENERATE OPEN for Pump
END LOOP

end_send_open

Communications Link Object

handle_link_state_interrupt()
EVENT := INPUT INTERRUPT VALUE
analyze_link(EVENT)

end_link_state_interrupt

handle_message_received_interrupt()
POINTER := INPUT MESSAGE BUFFER ADDRESS
add_to_rcv_list(POINTER)

end_handle_message_received_interrupt

handle_message_send_interrupt()
POINTER := MESSAGE BUFFER ADDRESS
FREE(POINTER)
transmit_message

end_handle_message_send_interrupt

add_to_rcv_list(message)
Insert message at tail of RCV_LIST

end_add_to_rcv_list

decode_message()
get message from head of RCV_LIST
IF message is a RESTART COMMAND

THEN GENERATE a RESTART for the Gas Station
ELSEIF message is a SHUTDOWN COMMAND

THEN GENERATE a SHUTDOWN for the Gas Station
ELSEIF message is an authorization reply

THEN IF message contains authorization
THEN GENERATE an AUTHORIZED for the appropriate

Pump
ELSE GENERATE a NOT AUTHORIZED for the appropriate

Pump
ENDIF

ENDIF
Remove message from the RCV LIST
FREE message for a new receive buffer

end_decode_message

analyze_link_state(EVENT)

Appendix D. OMT Specification Object Function Descriptions

D--53

ENCAPSULATES Link STATE TRANSITION DIAGRAM
end_analyze_link_state

add_to_tx_list(message)
Insert Message at tail of TX LIST
transmit_message

end_add_to_tx_list

transmit_message()
IF TX_LIST is empty THEN RETURN
IF status is UP and no message is being transmitted

THEN start transmission of next message from TX LIST
ELSEIF LINK STATUS is DOWN

THEN save_credit_transactions
ENDIF
RETURN

end_transmit_message

save_credit_transactions()
FOR EVERY message on TX LIST

IF message is a Credit Transaction
THEN Save message to CREDIT TRANSACTION LIST on Disk

ENDIF
Remove message from TX LIST

END FOR EVERY message on TX LIST LOOP
end_save_credit_transactions

restore_credit_transactions()
FOR EVERY message on CREDIT TRANSACTION LIST on Disk

Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk

END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP
end_restore_credit_transaction

Appendix D. OMT Specification Object Function Descriptions

D--54

Overview Of AGSM Task Architecture

The Automated Gas Station Management (AGSM) software comprises a set four tasks to
manage the gas station and a set of four tasks for each pump. This architecture is illustrated in
Figure E-3. The architecture is reproduced in Figure E-4 with the inter-task communications
identified by numbering the arcs between the tasks.

As shown in Figure E-3, each gas station consists of four tasks: 1) Gas Station Control, 2)
Detector Array, 3) Alarm, and 4) Communications Link. The Gas Station Control task, activated
by the arrival of messages in the Gas Station Control Queue, manages the operation of the gas
station software. The Detector Array task, activated by a periodic timer event, polls each of the
smoke and heat detectors installed at the gas station. When the concentration of smoke particles
or the temperature exceeds a pre-defined threshold at any of the smoke or heat detectors,
respectively, the Detector Array task notifies the Gas Station Control task. The Alarm task, when
enabled, continuously sounds the gas station alarm until the task is disabled. The
Communications Link task acts as a conduit between the gas station and a remote central facility.
Messages sent from the station to the remote central facility and messages received at the station
from the remote cental facility pass through the Communications Link task. The task is activated
by messages arriving in the Transmit Messages Queue and by any of three hardware interrupts
(message sent, message received, and link state change).

The gas station includes a number of pumps, each of which is controlled through four
software tasks, as shown in Figure E-3. The main task managing a pump is the Pump Control
task which sequences and synchronizes external inputs that affect the pump. The Pump Control
task is activated by the arrival of a message in the Pump Control Queue. The Gas Dispenser
task, activated by a message from the Pump Control task, controls the dispensing of gasoline
through the pump’s gas dispenser. The Card Reader task, when activated by a Card Inserted
Interrupt, extracts information from a customer’s cash or credit card, updates the Card data
abstraction IHM, and awaits further commands issued on behalf of the Pump Control task. The
Switch task simply converts switch activation and deactivation interrupts into internal events and
sends them to the Pump Control Queue.

Turning attention to Figure E-4, some typical flows of control through the system can be
described. A customer approaches an operating pump at an open gas station and inserts a credit
or cash card causing a Card Inserted Interrupt (1). The Card Reader task determines the type of
card that was inserted. If the card is not recognized, then the card is ejected from the card reader.
If the card is recognized, an appropriate data abstraction object is created and the information
from the card is stored within the object (2). A card inserted event is then passed to the Pump
Control Queue (3). The Pump Control task examines the card inserted event and related card
information (4). If the card is a cash card that is exhausted, then the Cash Value Used LED is
lighted (5) and the Card Reader task is asked to eject the card (14). If the card is a credit card,
then an authorization request is issued to the remote central facility via the Transmit Messages
Queue (6). If a cash card was inserted that had cash value, or if a credit card was inserted and an
authorization approval is received from the remote central facility (7), then the Pump Control
task updates the transaction IHM (8). Of course, the remote central facility may refuse to

Appendix E. ADARTS/COBRA Design Task Architecture Overview

E-2

 authorize the credit transaction (7), in which case, the Pump Control task lights the Cannot
Process Card LED (5) and the Card Reader task is asked to eject the card (14).

Once a transaction has been authorized, gas can only be dispensed if the pump switch is
turned on by the customer. This event could occur in parallel with the transaction authorization
or it could occur after the transaction authorization, but the switch must be on before gas can be
dispensed. When the customer activates the switch (9), the Switch task generates a switch on
event for the Pump Control Queue (10).

Once a transaction is authorized and the switch is on, the Pump Control task issues a start
dispensing command (11) to the Gas Dispenser task. The Gas Dispenser task extracts any cash
limit from the transaction object (12) and dispenses gas until the limit is reached, or until the
Pump Control task orders a stop (11). Once complete, the Gas Dispenser task records the cost of
gas purchased in the transaction object (12) and issues a stopped event to the Pump Control
Queue (13).

The Pump Control task then completes the transaction. For a cash transaction, a new cash
value is computed for the customer’s cash card and the card is updated (14). For a credit
transaction, a credit transaction record is forwarded to the remote central facility via the Transmit
Messages Queue (6). In either case, the customer’s card will finally be ejected (14).

Now consider the flow of control activated by an emergency at the gas station. A timer event
(15) will activate the Detectors task periodically so that the various smoke and heat detectors can
be polled. Should a pre-defined threshold be exceeded at any of the detectors, the Detectors task
will generate a threshold exceeded event for the Gas Station Control Queue (16). The Gas
Station Control task, once alerted to the emergency, send an Alarm On Command (17) to the
Alarm task and will send an alarm message to the remote central facility via the Transmit
Messages Queue (18). The Gas Station Control task will also send a close command to each
Pump Control Queue (19) and will disable the Detectors task (20). When the Pump Control task
receives a close command any transaction in progress will be completed immediately and the
pump will be closed.

The gas station can also be shutdown and restarted remotely from the central facility (22).
When asked to shutdown, a close command is issued to each Pump Control Queue and when
asked to restart an open command is issued to each Pump Control Queue (19). The gas station
can also be shutdown and restarted due to changes in the state of the communications link.
When the communications link state changes an interrupt is issued by the communications
hardware (21). If the link goes down, then a link down event is issued to the Gas Station Control
Queue; otherwise, a link up event is issued to the Gas Station Control Queue (22). If the link
goes up, then the Gas Station Control task issues an open command to each Pump Control Queue
(19). If the link goes down, then the Gas Station Control task issues a close command to each
Pump Control Queue (19).

Appendix E. ADARTS/COBRA Design Task Architecture Overview

E-2

DETECTOR
ARRAY

GAS
STATION
CONTROL

COMMUNICATIO
NS

LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Detector
Command

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

ALARM

CARD
READER

SWITCH

Card
Inserted
Interrupt

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Tasks
For Each
Pump

E-3 AGSM TASK ARCHITECTURE DIAGRAM CREATED FROM COBRA
SPECIFICATION

LED
Commands

Alarm
Command

DETECTOR
ARRAY

GAS
STATION
CONTROL

COMMUNICATIO
NS

LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Detector
Command

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

ALARM

CARD
READER

SWITCH

Card
Inserted
Interrupt

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Tasks
For Each
Pump

E-4 ANNOTATED TASK ARCHITECTURE DIAGRAM

LED
Commands

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Alarm
Command

AUTOMATED GAS STATION MANAGER

 COBRA/ADARTS

 TASK BEHAVIOR SPECIFICATIONS

E-6

ALARM TASK BEHAVIOR SPECIFICATION

TASK: ALARM

A) TASK INTERFACE:

TASK INPUTS:

Messages: 1) Alarm Command (from Gas Station Control Task, tighly-coupled, no reply) -
requests that the alarm be activated or deactivated.

parameters - action (0 = Turn_Off, 1 = Turn_On)

TASK OUTPUTS:

Data: 1) Alarm Commands - sounds the alarm.

IHMs REFERENCED:

NONE

B) TASK STRUCTURE:

Criterion: Asynchronous activation of a periodic output task.

Data Transformations: Alarm (3.3)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by an Alarm Command message, and then executed periodically
until deactivated.

D) PRIORITY:

Medium - outputs alarm frequency to sound alarm.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-7

E) TASK EVENT SEQUENCING:

Loop A
Await(Alarm Command)
if Alarm Command.action = Turn_On

then Loop B
 output ON to Alarm

if Waiting(Alarm Command)
then if Alarm Command.action = Turn_Off

then break Loop B
 fi

fi
 delay 100 milliseconds

End Loop B
End Loop A

F) ERRORS DETECTED:

Ignores unrecognized actions and ignores redundant actions.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-8

CARD READER TASK BEHAVIOR SPECIFICATION

TASK: Card Reader

A) TASK INTERFACE:

TASK INPUTS:

Events: 1) Card Inserted Interrupt (external event) - indicates customer inserted a
card.

Messages: 1) Reader Command (from Pump Control Task, tightly-coupled, no reply) -
requests that the Card Reader perform some action.

parameters - command (0 = Eject, 1 = write), new_cash_value (included
only with write command).

Data: 1) Card Data - ASCII data encoding identificaton number and either a cash value
(for a Cash Card) or and account number (for a Credit Card).

TASK OUTPUTS:

Messages: 1) Card Event (to Pump Control Queue, loosely-coupled) - indicates
 that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

Data: 1) Card Reader Commands - include READ, WRITE, and EJECT.

2) Card Data - ASCII data encoding identificaton number and a new cash value.

IHMs REFERENCED:

CARD_READER - encapsulates card reader operations.

CARD - encapsulates information from a Cash or Credit Card (updated by task).

B) TASK STRUCTURE:

Criterion: Asynchronous Device I/O Dependency

Data Transformations: Card Reader (1.3)

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-9

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a card inserted interrupt or by a message arriving from the
Pump Control Task.

D) PRIORITY:

High - for interrupt handling, Medium for responding to messages.

E) TASK EVENT SEQUENCING:

CARD INSERTED INTERRUPT VECTOR := wakeup(CARD_READER)

Loop
Await()

End Loop

wakeup(CARD_READER)
if (CARD_READER.read = FALSE) then return
Loop

Await(Reader Command from Pump Control Task)
if (Reader Command.command = Eject)

then CARD_READER.Eject
return

elsif (Reader Command.command = write)
then CARD_READER.write(Reader Command.new_cash_value)

fi
End Loop

End_wakeup

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-10

COMMUNICATIONS LINK TASK BEHAVIOR
SPECIFICATION

TASK: Communications Link

A) TASK INTERFACE

TASK INPUTS:

Events: 1) Link State Interrupt (external event) - indicates that the communications
hardware has detected a change in link state.

2) Message Received Interrupt (external event) - indicates that the
communications hardware has completed reception of an incoming

message.

3) Message Sent Interrupt (external event) - indicates that the communications
hardware has completed transmission of an outgoing message.

Messages: 1) Transmit Messages Queue

a) Alarm Message (from Gas Station Control Task, loosely-coupled) - requests
transmission of an Alarm Message to the Remote Central Facility.

parameters - remote_address, station_id

b) Authorization Request (from Pump Control Task, loosely-coupled) - requests
transmission of an Authorization Request Message to the Remote Central
Facility.

parameters - remote_address, station_id, pump_id, account_number

c) Credit Transaction (from Pump Control Task, loosely-coupled) - requests
transmission of a Credit Transaction Message to the Remote Central
Facility.

parameters - remote_address, station_id, pump_id, account_number,
 amount_purchased

d) Received (from self, loosely-coupled) - requests that an incoming message by
decoded.

parameters - none

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-11

Data: 1) Incoming Messages from the communications hardware.

TASK OUTPUTS:

Messages: 1) RCF Event (to Gas Station Control Queue, loosely-coupled) - Remote Central
Facility requests the gas station to change its operating state.

parameters - rcf_event (0 = shutdown, 1 = restart)

2) Link Event (to Gas Station Control Queue, loosely-coupled) - indicates that the
communications link has changed state.

parameters - status (0 = link_down, 1 = link_up)

3) Credit Authorization Event (to Pump Control Queue, loosely-coupled) -
informs the Pump about a customer’s credit status.

parameters - status (0 = not_okay, 1 = okay)

Data: 1) Outgoing Messages to the communications hardware.

IHMs REFERENCED:

LINK - encapsulates operations for handling messages.

B) TASK STRUCTURE:

Criterion: Asynchronous Device I/O Dependency, Asynchronous Event Dependency, and
Functional Cohesion

Data Transformations: Add to Rcv List (2.1), Decode Message Header (2.2),
Analyze Link State (2.3), Add to Tx List (2.4),
Transmit Message (2.5.1), Save Credit Transactions (2.5.2),
Restore Credit Transactions (2.5.3)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Transmit Messages Queue and by the
occurrence of various communications hardware interrupts.

D) PRIORITY:

High - for interrupt handling routines, Medium for processing the input queue.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-12

E) TASK EVENT SEQUENCING

COMMUNICATIONS H/W INTERRUPT VECTOR 0 := Link_State
COMMUNICATIONS H/W INTERRUPT VECTOR 1 := Message_Rxed
COMMUNICATIONS H/W INTERRUPT VECTOR 2 := Message_Txed

Loop
Await(Message Arrival in Transmit Messages Queue)
Switch (Message Type)

Case Alarm Message
Case Authorization Request
Case Credit Transaction

LINK.add_to_tx_list(Message)
LINK.transmit_message
break

Case Received
decode_message(LINK)
break

End Switch
End Loop

Link_State
event := input link_status_register
Switch (LINK.analyze_link(event))

Case 1
send Link Event(status:=link_up) to Gas Station Control Queue
break

Case -1
send Link Event(status:=link_down) to Gas Station Control Queue
break

End Switch
End_Link_State

Message_Rxed
message := input received_message_pointer
LINK.add_to_rcv_list(message)
send Message(Type=Received) to Transmit Messages Queue

End_Message_Rxed

Message_Txed
message := input sent_message_pointer
free(message)
LINK.transmit_message

End_Message_Txed

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-13

decode_message(LINK)

Message := LINK.remove_from_rcv_list
Switch(Message Type)

Case Shutdown
send RCF Event(rcf_event:=shutdown) to Gas Station Control Queue
break

Case Restart
send RCF Event(rcf_event:=restart) to Gas Station Control Queue
break

Case Authorization Reply
Switch response

Case Not Authorized
send Credit Authorization Event(status:=not_okay)

to Pump Control Queue for Pump ID
Case Authorized

send Credit Authorization Event(status:=okay)
to Pump Control Queue for Pump ID

End Switch
End Switch
free(Message)

end_decode_message

F) ERRORS DETECTED:

Ignores unrecognized messages and events.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-14

DETECTOR ARRAY TASK BEHAVIOR SPECIFICATION

TASK: Detector Array

A) TASK INTERFACE:

TASK INPUTS:

Events: 1) Timer (external event) - stimulates the task to poll its various smoke
and heat detectors.
Messages: 1) Detector Command (from Gas Station Task, tightly-coupled, no reply) -

requests that the task enable or disable itself.

parameters - command (0 = disable, 1= enable)

Data: 1) Smoke Sensor Data from the smoke detectors.

2) Heat Sensor Data from the heat detectors.

TASK OUTPUTS:

Messages: 1) Emergency Event (to Gas Station Control Queue, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none

IHMs REFERENCED:

HEAT_DETECTOR - encapsulates raw sensor data from heat detectors and
 provides operations to test for threshold.

SMOKE_DETECTOR - encapsulates raw sensor data from smoke detectorsand
 provides operations to test for threshold.

B) TASK STRUCTURE:

Criterion: Periodic I/O Dependency

Data Transformations: Detector Array (3.2)

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-15

C) TIMING CHARACTERISTICS:

Activation: Periodic - activated by a timer, when task is enabled.

D) PRIORITY:

High - monitors safety conditions.

E) TASK EVENT SEQUENCING:

TIMER VECTOR := Poll_Detectors

Start Timer
Loop

Await(Detector Command)
Switch (Detector Command.command)

Case disable
Stop Timer
break

Case enable
Stop Timer
Start Timer
break

End Switch
End Loop

Poll_Detectors
For Every HEAT_DETECTOR

HEAT_DETECTOR.read
if (HEAT_DETECTOR.monitor_sensor)

then send Emergency Event to Gas Station Control Queue
End For
For Every SMOKE_DETECTOR

SMOKE_DETECTOR.read
if (SMOKE_DETECTOR.monitor_sensor)

then send Emergency Event to Gas Station Control Queue
End For

End_Poll_Detectors

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-16

GAS DISPENSER TASK BEHAVIOR SPECIFICATION

TASK: Gas Dispenser

A) TASK INTERFACE:

TASK INPUTS:

Messages: 1) Gas Command (from Pump Control Task, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

Data: 1) Meter Data - count of the amount of gas dispensed.

2) TRANSACTION.limit - cash limit on amount of gas to be dispensed

TASK OUTPUTS:

Messages: 1) Stopped Event (to Pump Control Queue, loosely-coupled) - indicates
 that gas is no longer being dispensed.

Data: 1) Dispenser Commands - turns dispenser ON and OFF.

2) Display Data - amount and cost of gas to be displayed for customer viewing.

3) TRANSACTION.cost_of_gas - records the cost of the customer’s purchase.

IHMs REFERENCED:

GAS_DISPENSER - encapsulates dispenser operations.

TRANSACTION - encapsulates transaction data.

B) TASK STRUCTURE:

Criterion: Controls Gas Dispenser Device, Activated and Deactivated Asynchronously, but
once activated, can run until a limit is reached.

Data Transformations: Gas Dispenser (1.5)

C) TIMING CHARACTERISTICS:

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-17

Activation: Asynchronous by a message arriving from the Pump Control Task.

D) PRIORITY:

High - must monitor dispensing operation on a polling basis.

E) TASK EVENT SEQUENCING:

Loop
Await(Dispenser Command)
if Dispenser Command.command not = start_dispensing

then continue
TRANSACTION := Dispenser Command.Transaction
GAS_DISPENSER.clear_amount_dispensed
GAS_DISPENSER.start_gas
Loop

GAS_DISPENSER.update_amount_dispensed
GAS_DISPENSER.update_display
if GAS_DISPENSER.?limit_reached(TRANSACTION)

then break
if Waiting (Dispenser Command)

 then if Dispenser Command.command = stop_dispensing
then break

End Loop
GAS_DISPENSER.stop_gas
GAS_DISPENSER.update_amount_dispensed
GAS_DISPENSER.update_display
TRANSACTION.set_cost_of_gas(GAS_DISPENSER.get_amount_dispensed * 100 /

GAS_DISPENSER.get_price)
send Stopped Event to Pump Control Queue

End Loop

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-18

GAS STATION CONTROL TASK BEHAVIOR
SPECIFICATION

TASK: Gas Station Control

A) TASK INTERFACE:

TASK INPUTS:

Messages: 1) Gas Station Control Queue

a) RCF Event (from Communications Link Task, loosely-coupled) - indicates that
a command from the Remote Central Facility has arrived.

parameters - rcf_event (0 = shutdown, 1 = restart)

b) Link Event (from the Communications Link Task,
 loosely-coupled) - indicates the communications link has changed

 state

parameters - status (0 = link_down, 1 = link_up)

c) Emergency Event (from Detectors Task, loosely-coupled) - indicates
 that the gas station is on fire.

parameters - none

TASK OUTPUTS:

Messages: 1) Gas Station Event (to Pump Control Queue, loosely-coupled) - requests
the pump to change its operating state.

parameters - command (0 = close, 1 = open)

2) Alarm Message (to Transmit Messages Queue, loosely-coupled) -
informs the Remote Central Facility about an emergency at
the gas station.

parameters - remote address, station_id

3) Detector Command (to Detectors Task, tightly-coupled, no reply) - requests
that the Detectors be enabled or disabled.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-19

parameters - command (0 = disable, 1 = enable)

4) Alarm Command (to the Alarm Task, tightly-coupled, no reply) -
requests that the alarm be activated or deactivated

parameters - action (0 = Turn_Off, 1 = Turn_On)

IHMs REFERENCED:

GAS_STATION - encapsulates the Pump STD.

B) TASK STRUCTURE:

Criterion: Control Dependency (Gas Station task contains STD,
encapuslated in the Gas Station.process_event operation, that sequences task
operations.) and Sequential Cohesion.

Control Transformations: Gas Station Control (3.1)

Data Transformations: Send Alarm Message (3.4), Send Opens (3.5), and Send
Closes (3.6)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Gas Station Control Queue.

D) PRIORITY:

Medium - lower than the I/O tasks.

E) TASK EVENT SEQUENCING:

Loop
Await(Message Arrival in Gas Station Control Queue)
Switch (Message Type)

Case RCF Event
if RCF Event.rcf_event = shutdown

then event := SHUTDOWN
elsif RCF Event.rcf_event = restart

then event := RESTART
fi
break

Case Link Event
if Link Event.status = link_down

then event := LINK_DOWN

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-20

elsif Link Event.status = link_up
then event := LINK_UP

fi
break

Case Emergency Event
Emergency Event.event := THRESHOLD_EXCEEDED
break

End Switch
GAS_STATION.process_event(event)

End Loop

F) ERRORS DETECTED:

Ignores Gas Station STD events that are not recognized.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-21

PUMP CONTROL TASK BEHAVIOR SPECIFICATION

TASK: Pump Control

A) TASK INTERFACE:

TASK INPUTS:

Messages: 1) Pump Control Queue

a) Switch Event (from Switch Task, loosely-coupled) - indicates that a
 significant switch event has occurred

parameters - switch_event (0 = switch_off, 1 = switch_on)

b) Card Event (from Card Reader Task, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

c) Gas Station Event (from Gas Station Control Task, loosely-coupled) - requests
that the Pump change its operating state.

parameters - command (0 = close, 1 = open)

d) Authorization Event (from the Communications Link Task or from internal to
Pump Control Task, loosely-coupled)

parameters - status (0 = not_okay, 1 = okay)

e) Stopped Event (from Gas Dispenser Task, loosely-coupled) - indicates
 that gas is no longer being dispensed.

parameters - none

Data: 1) Cash and Credit Card Information from the Card IHM (which is created by
the Card Reader Task)

2) Transaction Information from the Transaction IHM (which is created by this
 task)

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-22

TASK OUTPUTS:

Messages: 1) Reader Command (to Card Reader Task, tightly-coupled, no reply) - requests
the Card Reader to execute a command.

parameters - command (0 =Eject, 1 = write), new_cash_value (included
 only with the write command)

2) Gas Command (to Gas Dispenser Task, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

3) Authorization Request (to the Transmit Messages Queue, loosely-coupled) -
requests that the Remote Central Facility check credit authorization
for a customer.

parameters - remote_address, station_id, pump_id, account_number

4) Credit Transaction (to the Transmit Messages Queue, loosely-coupled) -
informs the Remote Central Facility about a completed credit
transaction.

parameters - remote_address, station_id, pump_id, account_number,
 amount_purchased

Data: 1) Transaction - created by this task.

2) LED Commands - to light and extinguish the Pump’s LEDs

IHMs REFERENCED:

PUMP - encapsulates the Pump STD

CARD - encapsulates cash or credit card information read by the Card Reader
Task.

TRANSACTION - encapsulates an on-going transaction.

B) TASK STRUCTURE:

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-23

Criterion: Control Dependency (Pump task contains STD, encapuslated in
the Pump.process_event operation, that sequences task operations) and Sequential
Cohesion.

Control Transformation: Control Pump (1.1.1)

Data Transformations: Authorize Transaction (1.1.2), Establish Transaction
(1.1.3),

Complete Transaction (1.1.4), Reject Transaction (1.1.5)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Pump Control Queue.

D) PRIORITY:

Medium - lower than the I/O tasks.

E) TASK EVENT SEQUENCING:

Loop
Await(Message Arrival in Pump Control Queue)
Switch (Message Type)

Case Switch Event
if Switch Event.switch_event = switch_off

then event := OFF
elsif Switch Event.switch_event = switch_on

then event := ON
fi
break

Case Card Event
CARD := Card Event.Card
if Card Event.action = cash_card_inserted

then event := CASH_CARD_INSERTED
elsif Card Event.action = credit_card_inserted

then event := CREDIT_CARD_INSERTED
fi
break

Case Gas Station Event
if Gas Station Event.command = close

then event := CLOSE
elsif Gas Station Event.command = open

then event := OPEN
fi
break

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-24

Case Credit Authorization Event
if Credit Authorization Event.status = not_okay

then event := NOT_AUTHORIZED
elsif status = okay

then event := AUTHORIZED
fi
break

Case Stopped Event
event := Stopped
break

End Switch
PUMP.process_event(event, CARD)

End Loop

F) ERRORS DETECTED:

Ignores Pump STD events that are not recognized.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-25

SWITCH TASK BEHAVIOR SPECIFICATION

TASK: Switch

A) TASK INTERFACE:

TASK INPUTS:

Events: 1) Switch Activated Interrupt (external event) - indicates pump switch was turned
on.

2) Switch Deactivated Interrupt (external event) - indicates pump switch was
turned off.

TASK OUTPUTS:

Messages: 1) Switch Event (to Pump Control Queue, loosely-coupled) - indicates that a
switch event has occurred.

parameters - switch_event (0 = switch_off, 1 = switch_on)

IHMs REFERENCED:

None

B) TASK STRUCTURE:

Criterion: Asynchronous Device I/O

Data Transformations : Switch (1.2)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a Switch Interrupt.

D) PRIORITY:

High - captures and records hardware interrupts that would otherwise be lost.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-26

E) TASK EVENT SEQUENCING:

SWITCH INTERRUPT VECTOR := handle_switch_interrupt()
Loop

Await()
End Loop

handle_switch_interrupt()
input SWITCH_INTERRUPT_REGISTER
if switch_activated

then send Switch Event(switch_event:=switch_on)
to Pump Control Queue

fi
if switch_deactivated

then send Switch Event(switch_event:=switch_off)
to Pump Control Queue

fi

F) ERRORS DETECTED:

None.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E-27

AUTOMATED GAS STATION MANAGER

 COBRA/ADARTS

 INFORMATION HIDING MODULE

 SPECIFICATIONS

E-28

AUTOMATED GAS STATION MANAGER

INFORMATION HIDING MODULE SPECIFICATIONS

IHM: CARD_READER

Information Hidden: The details of reading and writing information on a magnetic card strip
and

of ejecting the card from a specific card reader.

Module Structure: Device Interface Module

Assumptions: Will only be accessed sequentially, i.e., no concurrent access.

Anticipated Changes:

Operations:

1) read

Function: Reads the first field, i.e., identification number, on a card magnetic strip to
establish whether the card is a credit or cash card. Reads the remaining
information on the card (i.e., cash value for a cash card and account
number for a credit card), converts the ASCII data from the card into
numeric form and stores it using the CARD IHM. Finally, returns
TRUE. If the identification number cannot be recognized, then the card is
ejected and FALSE is returned.

Input Parameters: None

Output Parameters: Status (FALSE = invalid card, TRUE = valid card)

2) eject

Function: Sends an Eject Command to the Card Reader.

Input Parameters: None

Output Parameters:

3) write

Function: Writes a new cash value to a cash card.

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-29

Input paramters: new cash value

Output parameters: None

IHM: CARD

Information Hidden: Card Information Data Store

Module Structure: Data Abstraction Module

Assumptions: Shared between two tasks; however, access is sequenced so that
no simultaneous access occurs.

Anticipated Changes:

Operations:

1) set_id_number

Function: Stores input id into identification number. Sets cash value and account
number to zero.

Input Parameters: id

Output Parameters: None

2) get_id_number

Function: Extracts internal identification number and returns it in output parameter.

Input Parameters: None

Output Parameters: identification number

3) is_cash_card

Function: Determines if the CARD is holding cash card or credit card information.

Input Parameters: None

Output Parameters: TRUE if Cash Card, FASLE if Credit Card

4) set_cash_value

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-30

Function: If this is a Cash Card, then stores input value into cash value.

Input Parameters: value

Output Parameters: None

5) get_cash_value

Function: If this is a Cash Card, then extracts internal cash value and returns it in
output parameter.

Input Parameters: None

Output Parameters: cash value

6) set_account_number

Function: If CARD is credit_card, then stores input number into account number.

Input Parameters: number

Output Parameters: None

7) get_account_number

Function: If CARD is credit card, then extracts internal account number and returns
it in output parameter.

Input Parameters: None

Output Parameters: account number

IHM: GAS_DISPENSER

Information Hidden: Details of the Gas Dispenser hardware

Module Structure: Device Interface Module

Assumptions: Accessed by one task only.

Anticipated Changes:

Operations:

1) clear_amount_dispensed

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-31

Function: Blanks to GALLONS display and the COST display. Sets the amount
dispensed attribute to zero.

Input Parameters: None

Output Parmeters: None

2) update_amount_dispensed

Function: Reads the current value of the gas dispenser’s meter, converts the value
to an integer and stores the integer as the amount dispensed attribute.

Input Parameters: None

Output Parameters: None

3) update_display

Function: Converts amount dispensed attribute into a display format and computes
cost of gas dispensed as a display format and outputs these values to the
appropriate displays.

Input Parameters: None

Output Parameters: None

4) get_amount_dispensed

Function: Returns the amount dispensed attribute

Input Parametes: None

Output Parameters: amount dispensed

5) get_price

Function: Returns the price per gallon

Input Parameters: None

Output Parameters: price per gallon

6) ?limit_reached

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-32

Function: Determines if the cost limit of gas to be dispensed has been reached.

Input Parameters: TRANSACTION

Output Parameters: TRUE (if limit reached) or FALSE (if limit not reached)

7) start_gas

Function: Outputs a START COMMAND to the gas dispenser

Input Parameters: None

Output Parameters: None

8) stop_gas

Function: Outputs a STOP COMMAND to the gas dispenser.

Input Parameters: None

Output Parameters: None

IHM: GAS_STATION

Information Hidden: Gas Station Control State Transition Diagram and a few supporting
operations.

Module Structure: State Transition Module (primarily)

Assumptions: Used by only one task

Anticipated Changes:

Operations:

1) process_event

Function: Execute the Gas Station Control STD.

Input Parameters: Event

Output Paramters: None

IHM: HEAT_DETECTOR

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-33

Information Hidden: Details of accessing the heat detector hardware.

Module Structure: Device Interface Module

Assumptions: Will be accessed by only one task.

Anticipated Changes:

Operations:

1) read

Function: Inputs sensor data from a heat detector and converts that sensor data
to an internal form that is stored in the processed sensor data attribute.

Input Parameters: None

Output Paramters: None

2) monitor_sensor

Function: Computes a delta between processed sensor data and a known threshold
If the delta exceeds the threshold, then returns TRUE; else, returns
FALSE.

Input Parameters: None

Output Parameters: TRUE if threshold exceeded, FALSE otherwise.

IHM: LINK

Information Hidden: Details of the communications link hardware.

Module Structure: Device Interface Module

Assumptions: Accessed by only one task.

Anticipated Changes:

Operations:

1) add_to_rcv_list

Function: Inserts an incoming message at the end of the receive list

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-34

Input Parameters: Message to insert

Output Parameters: None

2) analyze_link_state

Function: Determines whether the link has gone up or down. Returns new state if
change occurs, FALSE otherwise.

Input Parameter: Event

Output Parameter: 1 = Link came up, -1 = Link went down, 0 = no change.

3) add_to_tx_list

Function: Inserts the input message a the end of the transmit list, then stimulates a
transmission.

Input Parameters: Message to send

Output Parameters: None

4) transmit message

Function: If the transmit list is not empty and the link is up and a message is not
already being transmitted, then the next message transmission is started.
If the link is down, then save_credit_transactions is called.

Input Parameters: None

Output Parameters: None

5) save_credit_transactions

Function: Cycles through the transmit message list: if a message is a credit
transaction, then it is written to the end of a file. In any case, the message
is removed from the transmit message list.

Input Parameters: None

Output Parameters: None

6) restore_credit_transactions

Function: Cycles through the file of saved credit transactions, moving each credit

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-35

transaction from the file to the head of the transmit message list. The
file is then deleted.

Input Parameters: None

Output Parameters: None

7) remove_from_rcv_list

Function: Removes a message, if any, from the head of the receive message list.

Input Parameters: None

Output Parameters: pointer to message or zero, if the receive message list is empty.

IHM: PUMP

Information Hidden: The Pump Control STD

Module Structure: State Transition Module

Assumptions: Accessed by a single task.

Anticipated Changes:

Operations:

1) process_event

Function: Execute the appropriate transition in the Pump Control STD.

Input Parameters: Event and CASH_CARD or CREDIT_CARD

Output Parameters: None

IHM: SMOKE_DETECTOR

Information Hidden: Details of accessing the smoke detector hardware.

Module Structure: Device Interface Module

Assumptions: Will be accessed by only one task.

Anticipated Changes:

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-36

Operations:

1) read

Function: Inputs sensor data from a smoke detector and converts that sensor data
to an internal form that is stored in the processed sensor data attribute.

Input Parameters: None

Output Paramters: None

2) monitor_sensor

Function: Computes a delta between processed sensor data and a known threshold
If the delta exceeds the threshold, then returns TRUE; else, returns
FALSE.

Input Parameters: None

Output Parameters: TRUE if threshold exceeded, FALSE otherwise.

IHM: TRANSACTION

Information Hidden: On-going Transaction Data Store

Module Structure: Data Abstraction Module

Assumptions: Access shared by two tasks, but access is sequenced so that no
simultaneous access will occur.

Anticipated Changes:

Operations:

1) get_limit

Function: Extracts the value stored in the limit attribute.

Input Parameters: None

Output Parameters: limit

2) set_cost_of_gas

Function: Stores input value into the cost of gas attribute.

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-37

Input Parameters: value

Output Parameters: None

3) is_cash_transaction

Function: Determines if transaction is cash or credit.

Input Paramters: None

Output Parameters: TRUE is cash transaction, FALSE is credit transaction.

4) set_limit

Function: Sets the limit to the input value.

Input Parameters: value

Output Parameters: None

5) get_cost_of_gas

Function: Returns the value of the cost of gas field.

Input Parameters: None

Output Parameters: cost of gas

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

E-38

AUTOMATED GAS STATION MANAGER

COBRA/ADARTS

 SYSTEM ARCHITECTURE

E-39

Overview Of AGMS System Architecture

The AGMS system architecture, illustrated in Figure E-41, augments the task architecture,
shown previously in Figure E-3, by identifying the information hiding modules (IHMs) within
the system and by showing the allocation of those IHMs among tasks. A Gas Station IHM is
included within the Gas Station Control task. Within the Detectors task, a Heat Detector IHM is
included for each heat detector in the gas station and a Smoke Detector IHM is included for each
smoke detector. The Communications Link task includes a Link IHM.

Turning to the tasks associated with each pump, the Pump Control task includes a Pump
IHM, the Card Reader task includes a Card Reader IHM, and the Gas Dispenser task includes a
Gas Dispenser IHM. (The Switch task contains and uses no IHMs.) Within each set of pump
tasks, the Card and Transaction IHMs play a key role.

The Card IHM is used by the Card Reader task to store the information read from a
customer’s cash card or credit card. This information is them accessible to the Pump Control
Task. The Pump Control Task uses the information maintained by the Card IHM to authorize a
cash transaction and to compute a new cash value. The Pump Control Task uses the information
maintained by the Card IHM to request, from the remote central facility, authorization of a credit
transaction and to report the completion of a transaction to the remote central facility. The Gas
Dispenser task uses the Transaction IHM to determine if a limit is set on the cost of gas to be
dispensed and to store the cost of any gas that is dispensed from the gas dispenser. The Pump
Control task uses the Transaction IHM to set a transaction limit, to get the cost of the gas
dispensed, and to determine if the transaction is cash or credit.

Appendix E. ADARTS/COBRA Design System Architecture Overview

E-40

Timer
Event

Message
Received
Interrupt

Message
Sent
InterruptLink

State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Detector
Command

Transmit
Messages
Queue

Gas
Command

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

Card
Inserted
Interrupt

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Reader
Command

One Set Of
These Tasks
For Each
Pump

E-41 AGSM SYSTEM ARCHITECTURE DIAGRAM CREATED FROM COBRA
SPECIFICATION

Card Reader

Switch

Pump Control

Gas Dispenser

Gas Station ControlDetectors Communications Link

Gas Station

Pump

LinkSmoke
Detector

Heat
Detector

Card
Reader

Gas
Dispenser

get_cash_value

get_limit

set_cost_of_gas

Card

Alarm

Alarm
Command

get_id_numberset_id_number

set_cash_value

is cash card

set account number get account number

is cash transaction

Transaction

set_limit

get_cost_of_gas

LED Commands

 APPENDIX F. AUTOMATED GAS STATION
MANAGER DESIGN
FROM OMT SPECIFICATION
USING OODARTS

AUTOMATED GAS STATION MANAGER

 OMT/OODARTS

OVERVIEW OF

ACTIVE OBJECT ARCHITECTURE

F-1

Overview Of AGSM Active Object Architecture

The Automated Gas Station Management (AGSM) software comprises a set of three active
objects (AOs) to manage the gas station and a set of five active objects (AOs) for each pump.
This architecture is illustrated in Figure F-3. The architecture is reproduced in Figure F-4 with
the inter-object communications identified by numbering the arcs between the AOs.

As shown in Figure F-3, each gas station consists of three AOs: 1) Gas Station Control, 2)
Detectors, and 3) Communications Link. The Gas Station Control AO, activated by the arrival of
messages in the Gas Station Control Queue, manages the operation of the gas station software.
The Detectors AO, activated by a periodic timer event, polls each of the smoke and heat detectors
installed at the gas station. When the concentration of smoke particles or the temperature
exceeds a pre-defined threshold at any of the smoke or heat detectors, respectively, the Detectors
AO notifies the Gas Station Control AO. The Communications Link AO acts as a conduit
between the gas station and a remote central facility. Messages sent from the station to the
remote central facility and messages received at the station from the remote cental facility pass
through the Communications Link AO. The AO is activated by messages arriving in the
Transmit Messages Queue and by any of four hardware interrupts (message sent, message
received, link state change, and time-out).

The gas station includes a number of pumps, each of which is controlled through five AOs, as
shown in Figure F-3. The main object managing a pump is the Pump Control AO which
sequences and synchronizes external inputs that affect the pump. The Pump Control AO is
activated by the arrival of a message in the Pump Control Queue. The Gas Dispenser Control
Ao, activated by a message from the Pump Control AO, controls the dispensing of gasoline
through the pump’s gas dispenser. The Card Reader Control Ao, when activated by a Card
Inserted Interrupt, extracts information from a customer’s cash or credit card, creates an
appropriate Card data abstraction object, and awaits further commands issued under control of
the Pump Control AO. The Switch Monitoring AO simply converts switch activation and
deactivation interrupts into internal events and sends them to the Pump Control Queue. The
LED Control AO, activated by messages arriving in the Light Queue, controls the lighting and
extinguishing of the two LEDs (Cash Value Used and Cannot Process Card) on the pump.

Turning attention to Figure F-4, some typical flows of control through the system can be
described. A customer approaches an operating pump at an open gas station and inserts a credit
or cash card causing a Card Inserted Interrupt (1). The Card Reader Control Ao determines the
type of card that was inserted. If the card is not recognized, then the LED Control AO is asked to
light the Cannot Process Card LED (2). If the card is recognized, an appropriate data abstraction
object is created and the information from the card is stored within the object (3). A card
inserted event is then passed to the Pump Control Queue (4). The Pump Control AO examines
the card inserted event and related card information (5). If the card is a cash card that is
exhausted, then a request is sent to the LED Control AO to light the Cash Value Used LED (6)
and the Card Reader Control AO is asked to eject the card (14). If the card is a credit card, then
an authorization request is issued to the remote central facility via the Transmit Messages Queue
(7). If a cash card was inserted that had cash value, or if a credit card was inserted and an
authorization approval is received from the remote central facility (8), then the Pump Control AO

Appendix F. OODARTS/OMT Design Active Object Architecture Overview

F-5

creates an appropriate transaction object (9). Of course, the remote central facility may refuse to
authorize the credit transaction (8), in which case, the Pump Control AO issues a request to the
LED Control AO to light the Cannot Process Card LED (6) and the Card Reader Control Ao is
asked to eject the card (14).

Once a transaction has been authorized, gas can only be dispensed if the pump switch is
turned on by the customer. This event could occur in parallel with the transaction authorization
or it could occur after the transaction authorization, but the switch must be on before gas can be
dispensed. When the customer activates the switch (10), the Switch Monitoring Ao generates a
switch on event for the Pump Control Queue (10a).

Once a transaction is authorized and the switch is on, the Pump Control AO issues a start
dispensing command (11) to the Gas Dispenser Control Ao. The Gas Dispenser Control Ao
extracts any cash limit from the transaction object (12) and dispenses gas until the limit is
reached, or until the Pump Control AO orders a stop (11). Once complete, the Gas Dispenser
Control Ao records the cost of gas purchased in the transaction object (12) and issues a stopped
event to the Pump Control Queue (13).

The Pump Control AO then completes the transaction. For a cash transaction, a new cash
value is computed for the customer’s cash card and the card is updated (14). For a credit
transaction, a credit transaction record is forwarded to the remote central facility via the Transmit
Messages Queue (7). In either case, the customer’s card will finally be ejected (14).

Now consider the flow of control activated by an emergency at the gas station. A timer event
(15) will activate the Detectors AO periodically so that the various smoke and heat detectors can
be polled. Should a pre-defined threshold be exceeded at any of the detectors, the Detectors AO
will generate a threshold exceeded event for the Gas Station Control Queue (16). The Gas
Station Control AO, once alerted to the emergency, will sound the gas station alarm and will
send an alarm message to the remote central facility via the Transmit Messages Queue (17). The
Gas Station Control AO will also send a close command to each Pump Control Queue (18).
When the Pump Control AO receives a close command any transaction in progress will be
completed immediately and the pump will be closed.

The gas station can also be shutdown and restarted remotely from the central facility (23).
When asked to shutdown, a close command is issued to each Pump Control Queue and when
asked to restart an open command is issued to each Pump Control Queue (18). The gas station
can also be shutdown and restarted due to changes in the state of the communications link.
When the communications link state changes an interrupt is issued by the communications
hardware (21). The Communications Link AO will then start a timer. If the link state doesn’t
change for the duration of the time period (22), then the link state will be changed. If the link
goes down, then a link down event is issued to the Gas Station Control Queue; otherwise, a link
up event is issued to the Gas Station Control Queue (23). If the link goes up, then the Gas
Station Control AO issues an open command to each Pump Control Queue (18). If the link goes
down, then the Gas Station Control AO issues a close command to each Pump Control Queue
(18).

Appendix F. OODARTS/OMT Design Active Object Architecture Overview

F-6

DETECTORS
GAS

STATION
CONTROL

COMMUNICATIO
NS

LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER
CONTROL

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

LED
CONTROL

Light
Queue

CARD
READER

CONTROL

SWITCH
MONITORING

Card
Inserted
Interrupt

LED
Commands

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Objects
For Each
Pump

F-3 AGSM ACTIVE OBJECT ARCHITECTURE DIAGRAM

Timer
Interrupt

DETECTORS
GAS

STATION
CONTROL

COMMUNICATION
S

LINK

Timer
Event

Message
Received
Interrupt

Message
Sent
Interrupt

Link
State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Transmit
Messages
Queue

PUMP
CONTROL

GAS
DISPENSER
CONTROL

Gas
Command

Transaction

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

LED
CONTROL

Light
Queue

CARD
READER

CONTROL

SWITCH
MONITORING

Card
Inserted
Interrupt

LED
Commands

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Card

Reader
Command

One Set Of
These Objects
For Each
Pump

F-4 ANNOTATED AGSM ACTIVE OBJECT ARCHITECTURE DIAGRAM

Timer
Interrupt

1 2

3

4

5

6
7

8

9

10

11
12

13

14

15

16 17

18

21
22

23

10a

AUTOMATED GAS STATION MANAGER

 OMT/OODARTS

ACTIVE OBJECT

BEHAVIOR SPECIFICATIONS

F-6

CARD READER CONTROL ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Card Reader Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Events: 1) Card Inserted Interrupt (external event) - indicates customer inserted a
card.

Messages: 1) Reader Command (from Pump Control AO, tightly-coupled, no reply) -
requests that the Card Reader perform some action.

parameters - command (0 = Eject, 1 = write), new_cash_value (included
only with write command).

Data: 1) Card Data - ASCII data encoding identificaton number and either a cash value
(for a Cash Card) or and account number (for a Credit Card).

AO OUTPUTS:

Messages: 1) Card Event (to Pump Control Queue, loosely-coupled) - indicates
 that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

2) Light Command (to Light Queue, loosely-coupled) - request that an LED be
lighted.

parameters - LED_number (0 = Cash_Value_Used, 1 =
Cannot_Process_Card)

Data: 1) Card Reader Commands - include READ, WRITE, and EJECT.

2) Card Data - ASCII data encoding identificaton number and a new cash value.

OBJECT CLASSES REFERENCED:

CARD_READER - encapsulates card reader device operations.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-7

CASH_CARD - encapsulates information from a Cash Card .
 (created by Card Reader)

CREDIT_CARD - encapsulates information from a Corporate Credit Card
 (created by Card Reader).

B) ACTIVE OBJECT STRUCTURE:

Criterion: Asynchronous Device I/O Dependency and Functional Cohesion.

Objects : Card Reader

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a card inserted interrupt or by a message arriving from the
Pump Control AO or from a Transaction Object executing within the Pump
Control AO’s thread of control.

D) PRIORITY:

High - for interrupt handling, Medium for responding to messages.

E) ACTIVE OBJECT EVENT SEQUENCING:

Card_Reader:CARD_READER
Pump_Control:ACTIVE_OBJECT
Reader_Command:MESSAGE
Card_Inserted:AO_INTERRUPT

Create(pc:ACTIVE_OBJECT, pcq:ACTIVE_QUEUE, lq:ACTIVE_QUEUE)
Card_Reader.Create(pcq, lq, CR_REGISTER_BASE)
Card_Inserted.Create(CI_INTERRUPT_VECTOR,wakeup)
Pump_Control := pc
Reader_Command.Create(READER_COMMAND)

end_Create

execute()
Loop

Await()
End Loop

end_execute

wakeup()
if (Card_Reader.read = FALSE) then return
Loop

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-8

Wait for (Reader_Command) from Pump_Control
if (Reader_Command.command = Eject)

then Card_Reader.Eject
return

elsif (Reader_Command.command = write)
then Card_Reader.write(Reader_Command.new_cash_value)

fi
End Loop

End_wakeup

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-9

COMMUNICATIONS LINK ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Communications Link

A) ACTIVE OBJECT INTERFACE

AO INPUTS:

Events: 1) Link State Interrupt (external event) - indicates that the communications
hardware has detected a change in link state.

2) Message Received Interrupt (external event) - indicates that the
communications hardware has completed reception of an incoming

message.

3) Message Sent Interrupt (external event) - indicates that the communications
hardware has completed transmission of an outgoing message.

4) Time Out Interrupt (external event) - indicates expiration of a timer provided
by the communications hardware.

Messages: 1) Transmit Messages Queue

a) Alarm Message (from Gas Station Control AO, loosely-coupled) - requests
transmission of an Alarm Message to the Remote Central Facility.

parameters - remote_address, station_id

b) Authorization Request (from Pump Control AO, loosely-coupled) - requests
transmission of an Authorization Request Message to the Remote Central
Facility.

parameters - remote_address, station_id, pump_id, account_number

c) Credit Transaction (from Pump Control AO, loosely-coupled) - requests
transmission of a Credit Transaction Message to the Remote Central
Facility.

parameters - remote_address, station_id, pump_id, account_number,
 amount_purchased

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-10

d) Received (from self, loosely-coupled) - requests that an incoming message by
decoded.

parameters - none

Data: 1) Incoming Messages from the communications hardware.

AO OUTPUTS:

Messages: 1) RCF Event (to Gas Station Control Queue, loosely-coupled) - Remote Central
Facility requests the gas station to change its operating state.

parameters - rcf_event (0 = shutdown, 1 = restart)

2) Link Event (to Gas Station Control Queue, loosely-coupled) - indicates that the
communications link has changed state.

parameters - status (0 = link_down, 1 = link_up)

3) Credit Authorization Event (to Pump Control Queue, loosely-coupled) -
informs the Pump about a customer’s credit status.

parameters - status (0 = not_okay, 1 = okay)

Data: 1) Outgoing Messages to the communications hardware.

OBJECT CLASSES REFERENCED:

LINK - encapsulates the Link STD and provides some operations for handling
 messages.

B) ACTIVE STRUCTURE:

Criterion: Asynchronous Device I/O Dependency and Control Dependency (Link object
encapsulates an STD in the analyze_link operation), and Functional Cohesion
(Link object contains operations to support the communications processing).

Objects: Link

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Transmit Messages Queue and by the
occurrence of various communications hardware interrupts.

D) PRIORITY:

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-11

High - for interrupt handling routines, Medium for processing the input queue.

E) ACTIVE OBJECT EVENT SEQUENCING

Link:LINK

Transmit_Messages_Queue:ACTIVE_QUEUE

Link_State_Interrupt:AO_INTERRUPT
RX_Interrupt:AO_INTERRUPT
TX_Interrupt:AO_INTERRUPT
Time_Out_Interrupt:AO_INTERRUPT

Create(tmq:ACTIVE_QUEUE, gscq:ACTIVE_QUEUE, pcql:ARRAY[ACTIVE_QUEUE])
Link.Create(gscq, pcql, LINK_COMMAND_REGISTER)
Transmit_Messages_Queue := tmq
Link_State_Interrupt.Create(LS_INTERRUPT_VECTOR, Link_State)
RX_Interrupt.Create(RX_INTERRUPT_VECTOR, Message_Rxed)
TX_Interrupt.Create(TX_INTERRUPT_VECTOR, Message_Txed)
Time_Out_Interrupt.Create(TO_INTERRUPT_VECTOR, Time_Out)

end_Create

execute()
message:MESSAGE

message.Create(SELECTOR)
Loop

Wait for message in Transmit_Messages_Queue
Switch (message.type)

Case Alarm Message
Case Authorization Request
Case Credit Transaction

Link.add_to_tx_list(message)
Link.transmit_message
break

Case Received
Link.decode_message
break

End Switch
End Loop

end_execute

Link_State

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-12

event:LINK_EVENT

event := input LINK_STATUS_REGISTER
Link.analyze_link(event)

End_Link_State

Message_Rxed
message:MESSAGE
received:MESSAGE

message.Create(SELECTOR)
message := input RECEIVED_MESSAGE_POINTER
Link.add_to_rcv_list(message)
received.Create(RECEIVED)
send received to Transmit_Messages_Queue

End_Message_Rxed

Message_Txed
message:MESSAGE

message := input SENT_MESSAGE_POINTER
free(message)
Link.transmit_message

End_Message_Txed

Time_Out
Link.analyze_link(TIME_OUT)

End_Time_Out

F) ERRORS DETECTED:

Ignores unrecognized messages and events.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-13

DETECTORS ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Detectors

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Events: 1) Timer (external event) - stimulates the task to poll its various smoke
and heat detectors.
Data: 1) Smoke Sensor Data from the smoke detectors.

2) Heat Sensor Data from the heat detectors.

AO OUTPUTS:

Messages: 1) Emergency Event (to Gas Station Control Queue, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none

OBJECT CLASSES REFERENCED:

DETECTOR - encapsulates the Detector STD and provides some
 operations for sending Emergency Events.

HEAT_DETECTOR - encapsulates raw sensor data from heat detectors.

SMOKE_DETECTOR - encapsulates raw sensor data from smoke detectors.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Detector object contains STD, encapuslated in the
Detector.monitor_sensor operation), Functional Cohesion (Detector object
provides operatons to process detector data), and Inheritance (Smoke_Detector
and Heat_Detector objects inherit DETECTOR object class).

Objects : Detector, Smoke Detector, Heat Detector

C) TIMING CHARACTERISTICS:

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-14

Activation: Periodic - activated by a timer, when AO is enabled.

D) PRIORITY:

High - monitors safety conditions.

E) ACTIVE OBJECT EVENT SEQUENCING:

Detectors:LINKED_LIST of DETECTOR
NUMBER_OF_DETECTORS:INTEGER is CONSTANT
sd:SMOKE_DETECTOR
hd:HEAT_DETECTOR

Gas_Station_Control:ACTIVE_OBJECT
Timer_Interrupt:AO_INTERRUPT

Create(gsc:ACTIVE_OBJECT, gscq:ACTIVE_QUEUE)
Register:HW_REGISTER

Gas_Station_Control := gsc
Register := DETECTOR_REGISTER_BASE
For NUMBER_OF_DETECTORS

sd.Create(gscq, Register)
Detectors.add(sd)
Register.add(OFFSET)
hd.Create(gscq, Register)
Detectors.add(hs)
Register.add(OFFSET)

End For
Timer_Interrupt.Create(TIMER_INTERRUPT_VECTOR, Poll_Detectors)
end_Create

execute()
Poll:TIMER

Poll.Create
Poll.start(POLL_PERIOD)
Loop

Await()
End Loop

end_execute

Poll_Detectors
For Detectors.first until Detectors.last

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-15

Detectors.item.read
Detectors.item.process_change(Detectors.item.monitor_sensor)
Detectors.next

End For
End_Poll_Detectors

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-16

GAS STATION CONTROL ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Gas Station Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Messages: 1) Gas Station Control Queue

a) RCF Event (from Communications Link AO, loosely-coupled) - indicates that
a command from the Remote Central Facility has arrived.

parameters - rcf_event (0 = shutdown, 1 = restart)

b) Link Event (from the Communications Link AO,
 loosely-coupled) - indicates the communications link has changed

 state

parameters - status (0 = link_down, 1 = link_up)

c) Emergency Event (from Detectors AO, loosely-coupled) - indicates
 that the gas station is on fire.

parameters - none

AO OUTPUTS:

Messages: 1) Gas Station Event (to Pump Control Queue, loosely-coupled) - requests
the pump to change its operating state.

parameters - command (0 = close, 1 = open)

2) Alarm Message (to Transmit Messages Queue, loosely-coupled) -
informs the Remote Central Facility about an emergency at
the gas station.

parameters - remote address, station_id

Data: 1) Alarm Commands (ON or OFF) - turns the alarm on or off.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-17

OBJECT CLASSES REFERENCED:

GAS_STATION - encapsulates the Gas Station STD and provides some
 operations for sending messages to Active Objects.

ALARM - encapsulates operations to turn the alarm on and off.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Gas Station object contains STD,
encapuslated in the Gas Station.process_event operation, that sequences AO
operations.), Functional Cohesion (Gas Station object provides
operatons to support the STD), and Sequential Cohesion (the Alarm object is used
by the Gas Station STD to access alarm functions).

Objects : Gas_Station, Alarm

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Gas Station Control Queue.

D) PRIORITY:

Medium - lower than the I/O tasks.

E) ACTIVE OBJECT EVENT SEQUENCING:

Gas_Station_Control_Queue:ACTIVE_QUEUE

Alarm:ALARM
Gas_Station:GAS_STATION
Gas_Station_Control_Queue:ACTIVE_QUEUE

Create(gscq:ACTIVE_QUEUE, pcql:LINKED_LIST of ACTIVE_QUEUE,
tmq:ACTIVE_QUEUE, detectors:ACTIVE_OBJECT,
rcf:ADDRESS, sta_id:INTEGER)

Gas_Station_Control_Queue := gscq
Alarm.Create(ALARM_COMMAND_REGISTER)
Gas_Station.Create(rcf, sta_id, tmq, pcql, detectors, Alarm)

end_Create

execute()
event:GS_EVENT
message:MESSAGE

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-18

known:MESSAGE

message.Create(SELECTOR)
Loop

Wait for message in Gas_Station_Control_Queue
Switch (message.type)

Case RCF Event
known.Create(RCF_EVENT, message)
if known.rcf_event = shutdown

then event.Create(SHUTDOWN)
elsif known.rcf_event = restart

then event .Create(RESTART)
fi
break

Case Link Event
known.Create(LINK_EVENT, message)
if known.status = link_down

then event.Create(LINK_DOWN)
elsif known.status = link_up

then event.Create(LINK_UP)
fi
break

Case Emergency Event
event.Create(THRESHOLD_EXCEEDED)
break

End Switch
Gas_Station.process_event(event)

End Loop
end_execute

F) ERRORS DETECTED:

Ignores Gas Station STD events that are not recognized.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-19

GAS DISPENSER ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Gas Dispenser Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Messages: 1) Gas Command (from Pump Control AO, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

Data: 1) Meter Data - count of the amount of gas dispensed.

2) Transaction.limit - cash limit on amount of gas to be dispensed

AO OUTPUTS:

Messages: 1) Stopped Event (to Pump Control Queue, loosely-coupled) - indicates
 that gas is no longer being dispensed.

Data: 1) Dispenser Commands - turns dispenser ON and OFF.

2) Display Data - amount and cost of gas to be displayed for customer viewing.

3) Transaction.cost_of_gas - records the cost of the customer’s purchase.

OBJECT CLASSES REFERENCED:

GAS_DISPENSER - encapsulates dispenser operations.

TRANSACTION - encapsulates transaction data.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Asynchronous Event Dependency (gas dispenser is activated and deactivated
by events from the Pump Control AO) and Functional Cohesion (the Gas
Dispenser Object encapsulates operations supporting gas dispenser functions).

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-20

Objects : Gas_Dispenser

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving from the Pump Control Task.

D) PRIORITY:

High - must monitor dispensing operation on a polling basis.

E) ACTIVE OBJECT EVENT SEQUENCING:

Gas_Dispenser:GAS_DISPENSER
Pump_Control:ACTIVE_OBJECT
Dispenser_Command:MESSAGE

Create(pc:ACTIVE_OBJECT, pcq: ACTIVE_QUEUE)
Pump_Control := pc
Gas_Dispenser.Create(pcq, DISPENSER_REGISTER_BLOCK)
Dispenser_Command.Create(DISPENSER_COMMAND)

end_Create

execute()
Transaction:TRANSACTION

Loop
Wait for Dispenser_Command from Pump_Control
if Dispenser_Command.command not = start_dispensing

then continue
Transaction := Dispenser_Command.Transaction
Gas_Dispenser.clear_amount_dispensed
Gas_Dispenser.start_gas
Loop

Gas_Dispenser.update_amount_dispensed
Gas_Dispenser.update_display
if Gas_Dispenser.?limit_reached(Transaction)

then break
if Waiting Dispenser_Command from Pump_Control

 then if Dispenser_Command.command = stop_dispensing
then break

End Loop
Gas_Dispenser.stop_gas(Transaction)

End Loop
end_execute

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-21

F) ERRORS DETECTED:

Ignores unrecognized commands.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-22

LED CONTROL ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: LED CONTROL

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Messages: 1) Light Command (from Pump Control and Card Reader Control AOs,
loosely-coupled) - requests that an LED be lighted.

parameters - LED_ number (0 = Cash_Value_Used, 1 =
Cannot_Process_Card)

AO OUTPUTS:

Data: 1) LED Commands - turns LED ON and OFF.

OBJECT CLASSES REFERENCED:

NONE

B) ACTIVE OBJECT STRUCTURE:

Criterion: Resource Monitor Object.

Objects : LED

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Light Queue.

D) PRIORITY:

Medium - controls two LEDs on a pump.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-23

E) ACTIVE OBJECT EVENT SEQUENCING:

Light_Queue:ACTIVE_QUEUE
Light_Command:MESSAGE

Create(lq:ACTIVE_QUEUE)
Light_Queue := lq
Create.Light_Command(LIGHT_COMMAND)

end_Create

execute()
Loop

Wait for Light_Command in Light_Queue
if Light Command.LED_number = Cash_Value_Used

then output ON to LED_0
 delay 10 seconds

output OFF to LED_0
elsif Light Command.LED_number = Cannot_Process_Card

then output ON to LED_1
delay 10 seconds
output OFF to LED_1

fi
End Loop

end_execute

F) ERRORS DETECTED:

Ignores unrecognized LED numbers.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-24

PUMP CONTROL ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Pump Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Messages: 1) Pump Control Queue

a) Switch Event (from Switch AO, loosely-coupled) - indicates that a
 significant switch event has occurred

parameters - switch_event (0 = switch_off, 1 = switch_on)

b) Card Event (from Card Reader Control AO, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

c) Gas Station Event (from Gas Station Control AO, loosely-coupled) - requests
that the Pump change its operating state.

parameters - command (0 = close, 1 = open)

d) Authorization Event (from the Communications Link AO or from self,
loosely-coupled)

parameters - status (0 = not_okay, 1 = okay)

e) Stopped Event (from Gas Dispenser AO, loosely-coupled) - indicates
 that gas is no longer being dispensed.

parameters - none

Data: 1) Cash and Credit Card Information from the Card Object (which is created by
the Card Reader AO)

2) Transaction Information from the Transaction Object (which is created by
 Pump Control AO)

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-25

ACTIVE OBJECT OUTPUTS:

Messages: 1) Reader Command (to Card Reader Control AO, tightly-coupled, no reply) -
requests the Card Reader to execute a command.

parameters - command (0 =Eject, 1 = write), new_cash_value (included
 only with the write command)

2) Light Command (to Light Queue, loosely-coupled) -
requests LED Task light an LED.

parameters - LED_number (0 = Cash_value_used, 1 =
Cannot_process_card)

3) Gas Command (to Gas Dispenser AO, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

4) Authorization Request (to the Transmit Messages Queue, loosely-coupled) -
requests that the Remote Central Facility check credit authorization
for a customer.

parameters - remote_address, station_id, pump_id, account_number

5) Credit Transaction (to the Transmit Messages Queue, loosely-coupled) -
informs the Remote Central Facility about a completed credit
transaction.

parameters - remote_address, station_id, pump_id, account_number,
 amount_purchased

Data: 1) Transaction Object - created by this task.

OBJECT CLASSES REFERENCED:

PUMP - encapsulates the Pump STD

CASH_CARD - encapsulates cash card information read by the Card Reader
AO.

CREDIT_CARD - encapsulates credit card information read by the Card Reader
AO.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-26

TRANSACTION - encapsulates transaction information and is inherited by
 CASH_TRANSACTION and CREDIT_TRANSACTION.

CASH_TRANSACTION - encapsulates transaction data about a cash
transaction.

CREDIT_TRANSACTION - encapsulates transaction data about a credit
transaction.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Pump object contains STD, encapuslated in
the Pump.process_event operation, that sequences task operations.)

Objects : Pump

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Pump Control Queue.

D) PRIORITY:

Medium - lower than the I/O tasks.

E) ACTIVE OBJECT EVENT SEQUENCING:

Station_id:INTEGER
Pump_id:INTEGER
Rcf:ADDRESS
Pump :PUMP
Pump_Control_Queue:ACTIVE_QUEUE
Light_Queue: ACTIVE_QUEUE
Card_Reader: ACTIVE_OBJECT
Link:ACTIVE_QUEUE

Create(pcq: ACTIVE_QUEUE, cr:ACTIVE_OBJECT, lq:ACTIVE_QUEUE,
gd:ACTIVE_OBJECT, tmq:ACTIVE_QUEUE, rcf:ADDRESS
sta_id:INTEGER, pump_id:INTEGER)

Rcf := rcf
Pump_id := pump_id
Station_id := sta_id
Pump_Control_Queue := pcq
Light_Queue := lq
Card_Reader := cr
Link := tmq

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-27

Pump.Create(gd, sta_id, pump_id)
end_Create

execute()
event:PUMP_EVENT
card: CARD
message:MESSAGE
known:MESSAGE
transaction:TRANSACTION
cash_tran:CASH_TRANSACTION
credit_tran:CREDIT_TRANSACTION

message.Create(SELECTOR)
Loop

Wait for message in Pump_Control_Queue
Switch (message.type)

Case Switch Event
known.Create(SWITCH_EVENT, message)
if known.switch_event = switch_off

then event.Create(OFF)
elsif known.switch_event = switch_on

then eventCreate(ON)
fi
break

Case Card Event
known.Create(CARD_EVENT, message)
known.card := known.Card
if known.action = cash_card_inserted

then event.Create(CASH_CARD_INSERTED)
transaction :=
cash_tran.Create(Pump_Control_Queue,

Light_Queue, Card_Reader)
elsif known.action = credit_card_inserted

then event.Create(CREDIT_CARD_INSERTED)
transaction :=
credit_tran.Create(Rcf, Station_id, Pump_id

Link, Light_Queue, Card_Reader)
fi
break

Case Gas Station Event
known.Create(GS_EVENT, messsage)
if known.command = close

then event.Create(CLOSE)
elsif known.command = open

then event.Create(OPEN)

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-28

fi
break

Case Credit Authorization Event
known.Create(AUTHORIZATION, message)
if known.status = not_okay

then event.Create(NOT_AUTHORIZED)
elsif known.status = okay

then event.Create(AUTHORIZED)
fi
break

Case Stopped Event
event.Create(STOPPED)
break

End Switch
Pump.process_event(event, card, transaction)

End Loop
end_execute

F) ERRORS DETECTED:

Ignores Pump STD events that are not recognized.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-29

SWITCH MONITORING ACTIVE OBJECT

 BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Switch Monitoring

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Events: 1) Switch Activated Interrupt (external event) - indicates pump switch was turned
on.

2) Switch Deactivated Interrupt (external event) - indicates pump switch was
turned off.

AO OUTPUTS:

Messages: 1) Switch Event (to Pump Control Queue, loosely-coupled) - indicates that a
switch event has occurred.

parameters - switch_event (0 = switch_off, 1 = switch_on)

OBJECT CLASSES REFERENCED:

SWITCH - encapsulates Switch STD and some supporting operations.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Switch STD encapsulated in
Switch.process_event operation) and Functional Cohesion (Switch object
provides some supporting operations).

Objects : Switch

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a Switch Interrupt.

D) PRIORITY:

High - captures and records hardware interrupts that would otherwise be lost.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-30

E) ACTIVE OBJECT EVENT SEQUENCING:

Switch:SWITCH
Switch_Touch:AO_INTERRUPT

Create(pcq:ACTIVE_QUEUE)
Switch.Create(pcq, SWITCH_INPUT_REGISTER)
Switch_Touch.Create(SW_INTERRUPT_VECTOR, Switch.handle_switch_interrupt)

end_Create

execute()

Loop
Await()

End Loop
end_execute

F) ERRORS DETECTED:

None.

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F-31

AUTOMATED GAS STATION MANAGER

 OMT/OODARTS

 OBJECT CLASS SPECIFICATIONS

F-32

Object Class Specifications

 For

 Automated Gas Station Manager (AGSM)

Object Class: ALARM

Encapsulates: Specific method of accessing alarm hardware.

Object Structure: Device Interface Object

Assumptions: Sequential assess only.

Anticpated Changes: None

Attributes

Command_Register:HW_REGISTER

Operations

Create(cr:HW_REGISTER)
Command_Register := cr)

end_Create

sound
output ON_COMMAND to Command_Register

end_sound

reset
output OFF_COMMAND to Command_Register

end_reset

Object Class: CARD

Encapsulates: Card Identification Number and gives default operations for Account
Number and Cash Value stores.

Object Structure: Data Abstraction Object

Assumptions: Will be inherited by other objects.

Appendix F. OODARTS/OMT Design Object Class Specifications

F-33

Anticpated Changes: None

Attributes

identification_number: NUMERIC

Operations

set_id_number(id:NUMERIC)
identification_number := id

end_set_id_number

get_id_number:NUMERIC
return identification_number

end_get_id_number

set_account_number(x:NUMERIC)
return

end_set_account_number

get_account_number:NUMERIC
return ZERO

end_get_account_number

set_cash_value(x:INTEGER)
return

end_set_cash_value

get_cash_value:INTEGER
return ZERO

end_get_cash_value

Object Class: CARD_READER

Encapsulates: Specifics of interacting with Card Reader hardware.

Object Structure: Device Interface Object

Assumptions: Can serve a single task and process one card at a time.

Anticpated Changes: None

Attributes

Appendix F. OODARTS/OMT Design Object Class Specifications

F-34

cc: CASH_CARD
ccc:CREDIT_CARD
Pump_Control_Queue: ACTIVE_QUEUE
Light_Queue: ACTIVE_QUEUE
CR_Base :HW_REGISTER

Operations

Create(pcq: ACTIVE_QUEUE, lq: ACTIVE_QUEUE, cr_reg:HW_REGISTER)
Pump_Control_Queue := pcq
Light_Queue := lq
CR_Base := cr_reg

end_Create

write(new_cash_value:INTEGER)
ASCII_value: STRING

ASCII_value.convert_to(new_cash_value)
 output cc.get_id, ASCII_value to CR_Base+OUT
end_write

Eject
output EJECT_COMMAND to CR_Base+CMD

end_eject

read:BOOLEAN
ASCII_ID :STRING
Card_Event:MESSAGE
Light_Command:MESSAGE

input ASCII_ID from CR_Base+IN
ASCII_ID.convert_from(identification_number)
if identification_number is for Cash Card
 then cc.Create

cc.set_id(identification_number)
input ASCII_value from CR_Base+IN
ASCII_value.convert_from(cash_value)

 cc.set_cash_value(cash_value)
Card_Event.Create(CARD_EVENT)
Card_Event.action.set(CASH_CARD_INSERTED)
Card_Event.Card.set(cc)
send Card_Event to Pump_Control_Queue

eisif identification_number is for Corporate Credit Card
then ccc.Create,

ccc.set_id(identification_number)

Appendix F. OODARTS/OMT Design Object Class Specifications

F-35

input ASCII_value from CR_Base+IN
ASCII_value.convert_from(account_value)

 ccc.set_account_number(account_number)
Card_Event.Create(CARD_EVENT)
Card_Event.action.set(CREDIT_CARD_INSERTED)
Card_Event.Card.set(ccc)
send Card_Event to Pump_Control_Queue

else Light_Command.Create(LIGHT_COMMAND)
Light_Command.LED_number.set(CANNOT_PROCESS_CARD)
send Light_Command to Light_Queue
Eject
return FALSE

endif
return TRUE

end_read

Object Class: CASH_CARD

Encapsulates: Information store on a Cash Card

Object Structure: Data Abstraction Object

Assumptions: Can be shared between tasks, multiple readers, one writer. Inherits
CARD.

Anticpated Changes: None

Attributes

cash_value: INTEGER

Operations

set_cash_value(value:INTEGER)
cash_value := value

end_set_cash_value

get_cash_value:INTEGER
return cash_value

end_get_cash_value

Object Class: CASH_TRANSACTION

Encapsulates: Information about a transaction in progress.

Appendix F. OODARTS/OMT Design Object Class Specifications

F-36

Object Structure: Data Abstraction Object.

Assumptions: Can be shared among tasks, multiple readers, multiple writers. Inherits
TRANSACTION.

Anticpated Changes: None.

Attributes

Pump_Control_Queue:ACTIVE_QUEUE
Light_Queue:ACTIVE_QUEUE
Card_Reader:ACTIVE_OBJECT

Operations

Create(pcq: ACTIVE_QUEUE, lq:ACTIVE_QUEUE, cr:ACTIVE_OBJECT)
Pump_Control_Queue := pcq
Light_Queue := lq
Card_Reader := cr

end_Create

authorize(cc:CARD)
Auth_Event :MESSAGE

Auth_Event.Create(AUTHORIZATION)
if cc.get_cash_value > 0

then limit := cc.get_cash_value
Auth_Event.status.set(OKAY)
send Auth_Event to Pump_Control_Queue

else Auth_Event.status.set(NOT_OKAY)
send Auth_Event to Pump_Control_Queue

end_authorize

reject
Light_Command:MESSAGE
Reader_Command:MESSAGE

Light_Command.Create(LIGHT_COMMAND)
Light_Command.LED_number.set(CASH_VALUE_USED)
send Light_Command to Light Queue
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(EJECT)
send Reader_Command to Card_Reader

end_reject

Appendix F. OODARTS/OMT Design Object Class Specifications

F-37

complete(cc:CARD)
Reader_Command:MESSAGE

new_cash_value := cc.get_cash_value - cost_of_gas
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(WRITE)
Reader_Command.data.set(new_cash_value)
send Reader_Command to Card_Reader
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(EJECT)
send Reader_Command to Card_Reader

end_complete

Object Class: CREDIT_CARD

Encapsulates: Data read from customer’s corporate credit card

Object Structure: Data Abstraction Object

Assumptions: Can be shared between tasks, one writer, multiple readers. Inherits
CARD.

Anticpated Changes: None

Attributes

account_number: NUMERIC

Operations

set_account_number(account:NUMERIC)
account_number := account

end_set_account_number

get_account_number:NUMERIC
return account_number

end_get_account_number

Object Class: CREDIT_TRANSACTION

Encapsulates: Data associated with a credit transaction that is in progress.

Appendix F. OODARTS/OMT Design Object Class Specifications

F-38

Object Structure: Data Abstraction Object

Assumptions: Can be accessed by multiple reader and multiple writer tasks.
Inherits TRANSACTION.

Anticpated Changes: None

Attributes

Remote_Central_Facility: ADDRESS
Station_ID : INTEGER
Pump_ID : INTEGER
Link:ACTIVE_QUEUE
Light:ACTIVE_QUEUE
Card_Reader:ACTIVE_OBJECT

Operations

Create(rcf:ADDRESS, sid:INTEGER, pid:INTEGER, comm:ACTIVE_QUEUE,
lq: ACTIVE_QUEUE, cr:ACTIVE_OBJECT)
Remote_Central_Facility := rcf
Station_ID := sid
Pump_ID := pid
Link := comm
Light := lq
Card_Reader := cr

end_create

authorize(ccc:CARD)
Auth_Request:MESSAGE

limit : = 0
Auth_Request.Create(AUTHORIZATION_REQUEST)
Auth_Request.destination.set(Remote_Central_Facility)
Auth_Request.station.set(Station_ID)
Auth_Rqeuest.pump.set(Pump_ID)
Auth_Request.account.set(ccc.get_account_number)
send Auth_Request to Link

end_authorize

reject
Light_Command:MESSAGE
Reader_Command:MESSAGE

Light_Command.Create(LIGHT_COMMAND)

Appendix F. OODARTS/OMT Design Object Class Specifications

F-39

Light_Command.LED_number.set(CANNOT_PROCESS_CARD)
send Light_Command to Light
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(EJECT)
send Reader_Command to Card_Reader

end_reject

complete(ccc:CARD)
Credit_Tran:MESSAGE
Reader_Command:MESSAGE

Credit_Tran.Create(CREDIT_TRANSACTION)
Credit_Tran.destination.set(Remote_Central_Facility)
Credit_Tran.station.set(Station_ID)
Credit_Tran.pump.set(Pump_ID)
Credit_Tran.account.set(ccc.get_account_number)
Credit_Tran.amount.set(cost_of_gas)
send Credit_Tran to Link
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(EJECT)
send Reader_Command to Card_Reader

end_complete

Object Class: DETECTOR

Encapsulates: The abstract logic of a detector device.

Object Structure: Algorithm Abstraction Object

Assumptions: Will be inherited by specific types of detector objects.

Anticpated Changes: None

Attributes

threshold: REAL is CONSTANT
status: INTEGER
processed_sensor_data: REAL
Gas_Station_Control:ACTIVE_QUEUE

Operations

monitor_sensor:REAL
delta:REAL

Appendix F. OODARTS/OMT Design Object Class Specifications

F-40

delta := processed_sensor_data - threshold
delta.absolute_value
return delta

end_monitor_sensor

process_change(delta:REAL)
Encapsulates DETECTOR STD

end_process_change

send_threshold_exceeded
Emergency_Event:MESSAGE

Emergency_Event.Create(EMERGENCY)
send Emergency_Event to Gas_Station_Control

end_send_threshold_exceeded

read {abstract}
Must be provided for each type of detector that inherits detector.

end_read

Object Class: GAS_DISPENSER

Encapsulates: Gas dispenser hardware.

Object Structure: Device Inteface Object

Assumptions: Executes under control of a sequential task.

Anticpated Changes: None

Attributes

amount_dispensed: REAL
price_per_gallon: INTEGER is CONSTANT
Pump_Control :ACTIVE_OBJECT
Pump_Control_Queue :ACTIVE_QUEUE

Operations

Create(pc:ACTIVE_OBJECT, pcq:ACTIVE_QUEUE)
Pump_Control := pc
Pump_Control_Queue := pcq

end_Create

Appendix F. OODARTS/OMT Design Object Class Specifications

F-41

clear_amount_dispensed
output BLANK_COMMAND to GALLONS_DISPLAY_REG
output BLANK_COMMAND to COST_DISPLAY_REG
amount_dispensed := zero

end_clear_amount_dispensed

update_amount_dispensed
Meter_Data:INTEGER

input Meter_Data from METER_INPUT_REG
amount_dispensed := Meter_Data

end_update_amount_dispensed

update_display
display_gallons:INTEGER
display_cost:INTEGER

display_gallons := amount_dispensed/100
display_cost := display_gallons * price_per_gallon
output display_gallons to GALLONS_DISPLAY_REG
output display_cost to COST_DISPLAY_REG

end_update_display

get_amount_dispensed:REAL
return amount_dispensed

end_get_amount_dispensed

get_price:INTEGER
return price_per_gallon

end_get_price

?limit_reached(t:TRANSACTION)
if t.get_limit = 0 then return FALSE
if amount_dispensed/100 * price_per_gallon >= t.get_limit

then return TRUE
else return FALSE

end_?limit_reached

send_stopped
Stopped_Event:MESSAGE

Stopped_Event.Create(STOPPED)
send Stopped_Event to Pump_Control_Queue

end_send_stopped

Appendix F. OODARTS/OMT Design Object Class Specifications

F-42

start_gas
output START_COMMAND to DISPENSER_CNTL_REG

end_start_gas

stop_gas(t:TRANSACTION)

output STOP_COMMAND to DISPENSER_CNTL_REG
update_amount_dispensed
update_display
t.set_cost_of_gas(amount_dispensed * 100 / price_per_gallon)
send_stopped

end_stop_gas

Object Class: GAS_STATION

Encapsulates: Gas Station State Transition Diagram

Object Structure: State Transition Object

Assumptions: Will execute under control of a single, sequential task.

Anticpated Changes: None

Attributes

status: INTEGER
Pump_Ids: LINKED_LIST of ACTIVE_QUEUE
Station_Id: INTEGER
Remote_Central_Facility : ADDRESS
Alarm:ALARM
Link:ACTIVE_QUEUE

Operations

create(rcf:ADDRESS, sid:INTEGER, comm: ACTIVE_QUEUE, pid_list:LINK_LIST of
ACTIVE_QUEUE, Whistle:ALARM)

Link := comm
Remote_Central_Facility := rcf
Station_Id := sid
Pump_Ids := pid_list
status := OPERATING
Alarm := Whistle

end_create

Appendix F. OODARTS/OMT Design Object Class Specifications

F-43

process_event(event:GS_EVENT)
ENCAPSULATES the Gas Station STATE TRANSITION DIAGRAM

end_process_event

send_alarm_message
Help:MESSAGE

Help.Create(ALARM)
Help.destination.set(Remote_Central_Facility)
Help.station.set(Station_id)
send Help to Link

end_send_alarm_message

send_close
Close:MESSAGE

for Pump_Ids.first until Pump_Ids.last
Close.Create(GAS_STATION_EVENT)
Close.command.set(CLOSE)
send Close to Pump_Ids.current.item

end for
end_send_close

send_open
Open:MESSAGE

for Pump_Ids.first until Pump_Ids.last
Open.Create(GAS_STATION_EVENT)
Open.command.set(OPEN)
send Open to Pump_Ids.current.item

end for
end_send_open

Object Class: HEAT_DETECTOR

Encapsulates: Details of specific heat detector hardware.

Object Structure: Device Interface Module

Assumptions: Accessed by a single sequential task. Inherits DETECTOR.

Anticpated Changes: None

Appendix F. OODARTS/OMT Design Object Class Specifications

F-44

Attributes

Input_Register:HW_REGISTER

Operations

Create(gscq:ACTIVE_QUEUE, In_Regsiter:HW_REGISTER)
Gas_Station_Control := gscq
status := BELOW_THRESHOLD
Input_Register := In_Register

end_Create

read
Sensor_Data: INTEGER

input Sensor_Data from Input_Register
processed_sensor_data := Sensor_Data

end_read

Object Class: LINK

Encapsulates: Details associated with communications link hardware.

Object Structure: Device Interface Object

Assumptions: Accessible by a sequential task.

Anticpated Changes: None

Attributes

status: INTEGER
RCV_LIST: LINKED_LIST of MESSAGE
TX_LIST: LINKED_LIST of MESSAGE
CREDIT_TRANSACTION_LIST: FILE of MESSAGE
Gas_Station_Control_Queue:ACTIVE_QUEUE
Pumps:ARRAY[ACTIVE_QUEUE]
Command_Register:HW_REGISTER

Appendix F. OODARTS/OMT Design Object Class Specifications

F-45

Operations

Create(gscq:ACTIVE_QUEUE, pcql:ARRAY[ACTIVE_QUEUE],
Cmd_Register:HW_REGISTER)
status := LINK_UP
Gas_Station_Control_Queue := gscq
Pumps := pcql
Command_Register := Cmd_Register

end_Create

add_to_rcv_list(msg:MESSAGE)
insert msg at tail of RCV_LIST

end_add_to_rcv_list

decode_message
msg: MESSAGE
RCF_Event:MESSAGE
Auth_Event:MESSAGE
Auth_Reply:MESSAGE

get msg from head of RCV_LIST
Switch(msg.type)

Case RESTART COMMAND
RCF_Event.Create(RCF_EVENT)
RCF_Event.rcf_event.set(RESTART)
send RCF_Event to Gas_Station_Control_Queue
break

Case SHUTDOWN COMMAND
RCF_Event.Create(RCF_EVENT)
RCF_Event.rcf_event.set(SHUTDOWN)
send RCF_Event to Gas_Station_Control_Queue
break

Case AUTHORIZATION REPLY
Auth_Reply.Create(AUTHORIZATION_REPLY,msg)
if Auth_Reply.status = OKAY

then Auth_Event.Create(AUTHORIZATION)
Auth_Event.status.set(OKAY)
send Auth_Event to Pumps[Auth_Reply.Pump_id]

else Auth_Event.Create(AUTHORIZATION)
Auth_Event.status.set(NOT_OKAY)
send Auth_Event to Pumps[Auth_Reply.Pump_id]

endif
break

End Switch
remove msg from the RCV LIST

Appendix F. OODARTS/OMT Design Object Class Specifications

F-46

free msg for use as a new receive buffer
end_decode_message

analyze_link_state(event:LINK_EVENT)
ENCAPSULATES Link STATE TRANSITION DIAGRAM

end_analyze_link_state

add_to_tx_list(msg:MESSAGE)
insert msg at tail of TX_LIST
transmit_message

end_add_to_tx_list

transmit_message
if TX_LIST is empty then return
if status is UP and no message is being transmitted

then output TX_CMD, next message from TX_LIST B Command_Register
elsif status is DOWN

then save_credit_transactions
endif
return

end_transmit_message

save_credit_transactions
for each message on TX_LIST

if message is a Credit Transaction
then write message to CREDIT_TRANSACTION_LIST

endif
remove message from TX_LIST

end for each message on TX_LIST
end_save_credit_transactions

restore_credit_transactions
for each message on CREDIT_TRANSACTION_LIST

add message to head of TX_LIST
remove message from CREDIT_TRANSACTION_LIST

end for each message on CREDIT_TRANSACTION_LIST
end_restore_credit_transaction

Object Class: PUMP

Encapsulates: Pump State Transition Diagram

Object Structure: State Transition Object

Appendix F. OODARTS/OMT Design Object Class Specifications

F-47

Assumptions: Executed under control of a sequential task

Anticpated Changes: None

Attributes

status: INTEGER
ID: INTEGER -- identity of the Pump
Station: INTEGER -- identity of the station where the pump is located
Dispenser:ACTIVE_OBJECT

Operations

Create(gd:ACTIVE_OBJECT, sta:INTEGER, pid:INTEGER)
Dispenser := gd
Station := sta
ID := pid
status := OPEN

end_create

process_event(event:PUMP_EVENT, card:CARD, t:TRANSACTION)
ENCAPSULATES THE PUMP STATE TRANSITION DIAGRAM

end_process_event

Object Class: SMOKE_DETECTOR

Encapsulates: Details of specific smoke detector hardware.

Object Structure: Device Interface Module

Assumptions: Accessed by a single sequential task. Inherits DETECTOR.

Anticpated Changes: None

Attributes

Input_Register:HW_REGISTER

Operations

Create(gscq:ACTIVE_QUEUE, In_Regsiter:HW_REGISTER)
Gas_Station_Control := gscq

Appendix F. OODARTS/OMT Design Object Class Specifications

F-48

status := BELOW_THRESHOLD
Input_Register := In_Register

end_Create

read
Sensor_Data: INTEGER

input Sensor_Data from Input_Register
processed_sensor_data := Sensor_Data

end_read

Object Class: SWITCH

Encapsulates: Switch hardware and state transition diagram.

Object Structure: State Transition Object

Assumptions: Executed by a sequential task

Anticpated Changes: None

Attributes

status: INTEGER
Pump_Control_Queue:ACTIVE_QUEUE
Switch_Register:HW_REGISTER

Operations

Create(pcq:ACTIVE_QUEUE, sw_reg:HW_REGISTER)
Pump_Control_Queue := pcq
Switch_Register := sw_reg
status := SWITCH_OFF

end_Create

handle_switch_interrupt
event:SWITCH_EVENT

input event from Switch_Register
process_event(event)

end_handle_switch_interrupt

process_event(event:SWITCH_EVENT)
ENCAPSULATES SWITCH STATE TRANSITION DIAGRAM

Appendix F. OODARTS/OMT Design Object Class Specifications

F-49

end_process_event

send_switch_on
Switch_Event:MESSAGE

Switch_Event.Create(SWITCH_EVENT)
Switch_Event.switch_event.set(SWITCH_ON)
send Switch_Event to Pump_Control_Queue

end_send_switch_on

send_switch_off
Switch_Event:MESSAGE

Switch_Event.Create(SWITCH_EVENT)
Switch_Event.switch_event.set(SWITCH_OFF)
send Switch_Event to Pump_Control_Queue

end_send_switch_off

Object Class: TRANSACTION

Encapsulates: Astract concept of a transaction in progress.

Object Structure: Data Abstraction Object

Assumptions: To be inherited by other objects. Can be shared among tasks with
multiple readers, multiple writers.

Anticipated Changes: None

Attributes

cost_of_gas: INTEGER
limit: INTEGER

Operations

get_limt:INTEGER
return limit

end_get_limt

set_cost_of_gas(amount:INTEGER)
if amount < 0

then cost_of_gas := 0
else

Appendix F. OODARTS/OMT Design Object Class Specifications

F-50

cost_of_gas := amount
endif

end_set_cost_of_gas

complete {abstract}
Must be provided by an inheriting object

end_complete

authorize {abstract}
Must be provided by an inheriting object

end_authorize

reject {abstract}
Must be provided by an inheriting object

end_reject

Appendix F. OODARTS/OMT Design Object Class Specifications

F-51

AUTOMATED GAS STATION MANAGER

OMT/OODARTS

 SYSTEM ARCHITECTURE

F-52

Overview Of AGMS System Architecture

The AGMS system architecture, illustrated in Figure F-54, augments the active object (AO)
architecture, shown previously in Figure F-3, by identifying the passive objects within the system
and by showing the allocation of those objects among the active objects. A Gas Station object
and an Alarm object are included within the Gas Station Control AO. Within the Detectors AO,
a Heat Detector object is included for each heat detector in the gas station and a Smoke Detector
object is included for each smoke detector. The Communications Link AO includes a Link
object.

Turning to the active objects associated with each pump, the Pump Control AO includes a
Pump object, the Card Reader Control AO includes a Card Reader object, the Switch Monitoring
AO includes a Switch object, and the Gas Dispenser Control AO includes a Gas Dispenser
object. (The LED Control AO contains and uses no passive objects.) Within each set of pump
AOs, the Cash Card, Credit Card, Cash Transaction, and Credit Transaction passive objects play
a key role.

The Cash Card and Credit Card objects are used by the Card Reader Control AO to store the
information read from a customer’s cash card and credit card, respectively. This information is
them accessible to the Cash Transaction or Credit Transaction object, when executing under the
thread of control provided by the Pump Control AO. The Cash Transaction object uses the
information maintained by the Cash Card object to authorize a transaction and to compute a new
cash value. The Credit Transaction object uses the information maintained by the Credit Card
object to request, from the remote central facility, authorization of a transaction and to report the
completion of a transaction to the remote central facility. The Gas Dispenser Control AO uses
the Transaction object (of either type, cash or credit) to determine if a limit is set on the cost of
gas to be dispensed and to store the cost of any gas that is dispensed from the gas dispenser. The
Pump Control AO uses the Transaction object (of either type) to request that a transaction be
authorized, rejected, or completed. These passive objects (Cards and Transaction), shared
between active objects, embody the polymorphism described in the OMT specification.

A Cash Transaction object is capable of issuing write and eject commands to the Card Reader
Control AO and of issuing light commands to the Light Queue. A Credit Transaction object is
capable of issuing eject commands to the Card Reader Control AO, of sending light commands
to the Light Queue, and of requesting credit authorization and reporting completed credit
transactions via the Transmit Messages Queue.

Appendix F. OODARTS/OMT Design System Architecture Overview

F-53

Timer
Event

Message
Received
Interrupt

Message
Sent
InterruptLink

State
Interrupt

Outgoing
Messages

Incoming
Messages

Smoke
Sensor
Data

Alarm
Commands

Gas Station
Control
Queue

Heat
Sensor
Data

Transmit
Messages
Queue

Gas
Command

Dispenser
Commands

Meter
Data

Display
Data

Pump
Control
Queue

Light
Queue

Card
Inserted
Interrupt

LED
Commands

Card
Data

Card
Reader
Commands

Switch
Activated
Interrupt

Switch
Deactivated
Interrupt

Reader
Command

One Set Of
These Objects
For Each
Pump

F-54 AGSM SYSTEM ARCHITECTURE DIAGRAM CREATED FROM OMT
SPECIFICATION

Timer
Interrupt

LED Control

Card Reader Control

Switch Monitoring

Pump Control

Gas Dispenser Control

Gas Station ControlDetectors Communications Link

authorize

reject

complete

Credit
 Transaction

Alarm
Gas Station

Pump

LinkSmoke
Detector

Heat
Detector

Switch

Card
Reader

Gas
Dispenser

authorize

reject

complete

Cash
Transaction

set_id_number get_id_number

set_cash_value get_cash_value

set_id_number get_id_number

set_account_number get_account_number

get_limit

get_limit

set_cost_of_gas

set_cost_of_gas

Credit Card

Cash Card

